2,734 research outputs found
Large negative magnetoresistance in a ferromagnetic shape memory alloy : Ni_{2+x}Mn_{1-x}Ga
5% negative magnetoresistance (MR) at room temperature has been observed in
bulk Ni_{2+x}Mn_{1-x}Ga. This indicates the possibility of using
Ni_{2+x}Mn_{1-x}Ga as magnetic sensors. We have measured MR in the
ferromagnetic state for different compositions (x=0-0.2) in the austenitic,
pre-martensitic and martensitic phases. MR is found to increase with x. While
MR for x=0 varies almost linearly in the austenitic and pre-martensitic phases,
in the martensitic phase it shows a cusp-like shape. This has been explained by
the changes in twin and domain structures in the martensitic phase. In the
austenitic phase, which does not have twin structure, MR agrees with theory
based on s-d scattering model.Comment: 3 pages, 3 figures, Appl. Phys. Lett 86, 202508 (2005
Premartensite to martensite transition and its implications on the origin of modulation in Ni2MnGa ferromagnetic shape memory alloy
We present here results of temperature dependent high resolution synchrotron
x-ray powder diffraction study of sequence of phase transitions in Ni2MnGa. Our
results show that the incommensurate martensite phase results from the
incommensurate premartensite phase, and not from the austenite phase assumed in
the adaptive phase model. The premartensite phase transforms to the martensite
phase through a first order phase transition with coexistence of the two phases
in a broad temperature interval (~40K), discontinuous change in the unit cell
volume as also in the modulation wave vector across the transition temperature
and considerable thermal hysteresis in the characteristic transition
temperatures. The temperature variation of the modulation wave vector q shows
smooth analytic behaviour with no evidence for any devilish plateau
corresponding to an intermediate or ground state commensurate lock-in phases.
The existence of the incommensurate 7M like modulated structure down to 5K
suggests that the incommensurate 7M like modulation is the ground state of
Ni2MnGa and not the Bain distorted tetragonal L10 phase or any other lock-in
phase with a commensurate modulation. These findings can be explained within
the framework of the soft phonon model
Influence of Ni doping on the electronic structure of Ni_2MnGa
The modifications in the electronic structure of Ni_{2+x}Mn_{1-x}Ga by Ni
doping have been studied using full potential linearized augmented plane wave
method and ultra-violet photoemission spectroscopy. Ni 3d related electron
states appear due to formation of Ni clusters. We show the possibility of
changing the minority-spin DOS with Ni doping, while the majority-spin DOS
remains almost unchanged. The total magnetic moment decreases with excess Ni.
The total energy calculations corroborate the experimentally reported changes
in the Curie temperature and the martensitic transition temperature with x.Comment: 4 pages, 4 figures, accepted in Phys. Rev.
Direct Imaging of Multiple Planets Orbiting the Star HR 8799
Direct imaging of exoplanetary systems is a powerful technique that can
reveal Jupiter-like planets in wide orbits, can enable detailed
characterization of planetary atmospheres, and is a key step towards imaging
Earth-like planets. Imaging detections are challenging due to the combined
effect of small angular separation and large luminosity contrast between a
planet and its host star. High-contrast observations with the Keck and Gemini
telescopes have revealed three planets orbiting the star HR 8799, with
projected separations of 24, 38, and 68 astronomical units. Multi-epoch data
show counter-clockwise orbital motion for all three imaged planets. The low
luminosity of the companions and the estimated age of the system imply
planetary masses between 5 and 13 times that of Jupiter. This system resembles
a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science
Express Nov 13th, 200
Transport and Spectra in the Half-filled Hubbard Model: A Dynamical Mean Field Study
We study the issues of scaling and universality in spectral and transport
properties of the infinite dimensional particle--hole symmetric (half-filled)
Hubbard model within dynamical mean field theory. One of the simplest and
extensively used impurity solvers, namely the iterated perturbation theory
approach is reformulated to avoid problems such as analytic continuation of
Matsubara frequency quantities or calculating multi-dimensional integrals,
while taking full account of the very sharp structures in the Green's functions
that arise close to the Mott transitions and in the Mott insulator regime. We
demonstrate its viability for the half-filled Hubbard model. Previous known
results are reproduced within the present approach. The universal behavior of
the spectral functions in the Fermi liquid regime is emphasized, and adiabatic
continuity to the non-interacting limit is demonstrated. The dc resistivity in
the metallic regime is known to be a non-monotonic function of temperature with
a `coherence peak'. This feature is shown to be a universal feature occurring
at a temperature roughly equal to the low energy scale of the system. A
comparison to pressure dependent dc resistivity experiments on Selenium doped
NiS yields qualitatively good agreement. Resistivity hysteresis across the
Mott transition is shown to be described qualitatively within the present
framework. A direct comparison of the thermal hysteresis observed in VO
with our theoretical results yields a value of the hopping integral, which we
find to be in the range estimated through first-principle methods. Finally, a
systematic study of optical conductivity is carried out and the changes in
absorption as a result of varying interaction strength and temperature are
identified.Comment: 19 pages, 12 figure
Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements
We present new astrometric measurements from our ongoing monitoring campaign
of the HR 8799 directly imaged planetary system. These new data points were
obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and
2014. In addition, we present updated astrometry from previously published
observations in 2007 and 2008. All data were reduced using the SOSIE algorithm,
which accounts for systematic biases present in previously published
observations. This allows us to construct a self-consistent data set derived
entirely from NIRC2 data alone. From this dataset, we detect acceleration for
two of the planets (HR 8799b and e) at 3. We also assess possible
orbital parameters for each of the four planets independently. We find no
statistically significant difference in the allowed inclinations of the
planets. Fitting the astrometry while forcing coplanarity also returns
consistent to within 1 of the best fit values, suggesting that if
inclination offsets of 20 are present, they are not detectable
with current data. Our orbital fits also favor low eccentricities, consistent
with predictions from dynamical modeling. We also find period distributions
consistent to within 1 with a 1:2:4:8 resonance between all planets.
This analysis demonstrates the importance of minimizing astrometric systematics
when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A
Residual stress induced stabilization of martensite phase and its effect on the magneto-structural transition in Mn rich Ni-Mn-In/Ga magnetic shape memory alloys
The irreversibility of the martensite transition in magnetic shape memory
alloys (MSMAs) with respect to external magnetic field is one of the biggest
challenges that limits their application as giant caloric materials. This
transition is a magneto-structural transition that is accompanied with a steep
drop in magnetization (i.e., 'delta M') around the martensite start temperature
(Ms) due to the lower magnetization of the martensite phase. In this
communication, we show that 'delta M' around Ms in Mn rich Ni-Mn based MSMAs
gets suppressed by two orders of magnitude in crushed powders due to the
stabilization of the martensite phase at temperatures well above the Ms and the
austenite finish (Af) temperatures due to residual stresses. Analysis of the
intensities and the FWHM of the x-ray powder diffraction patterns reveals
stabilized martensite phase fractions as 97, 75 and 90% with corresponding
residual microstrains as 5.4, 5.6 and 3% in crushed powders of the three
different Mn rich Ni-Mn alloys, namely, Mn1.8Ni1.8In0.4, Mn1.75Ni1.25Ga and
Mn1.9Ni1.1Ga, respectively. Even after annealing at 773 K, the residual stress
stabilised martensite phase does not fully revert to the equilibrium cubic
austenite phase as the magneto-structural transition is only partially restored
with reduced value of 'delta M'. Our results have very significant bearing on
application of such alloys as inverse magnetocaloric and barocaloric materials
HAZMAT VI: The Evolution of Extreme Ultraviolet Radiation Emitted from Early M Star
Quantifying the evolution of stellar extreme ultraviolet (EUV, 100 -- 1000
) emission is critical for assessing the evolution of
planetary atmospheres and the habitability of M dwarf systems. Previous studies
from the HAbitable Zones and M dwarf Activity across Time (HAZMAT) program
showed the far- and near-UV (FUV, NUV) emission from M stars at various stages
of a stellar lifetime through photometric measurements from the Galaxy
Evolution Explorer (GALEX). The results revealed increased levels of
short-wavelength emission that remain elevated for hundreds of millions of
years. The trend for EUV flux as a function of age could not be determined
empirically because absorption by the interstellar medium prevents access to
the EUV wavelengths for the vast majority of stars. In this paper, we model the
evolution of EUV flux from early M stars to address this observational gap. We
present synthetic spectra spanning EUV to infrared wavelengths of 0.4
0.05 M stars at five distinct ages between 10 and 5000 Myr, computed
with the PHOENIX atmosphere code and guided by the GALEX photometry. We model a
range of EUV fluxes spanning two orders of magnitude, consistent with the
observed spread in X-ray, FUV, and NUV flux at each epoch. Our results show
that the stellar EUV emission from young M stars is 100 times stronger than
field age M stars, and decreases as t after remaining constant for a few
hundred million years. This decline stems from changes in the chromospheric
temperature structure, which steadily shifts outward with time. Our models
reconstruct the full spectrally and temporally resolved history of an M star's
UV radiation, including the unobservable EUV radiation, which drives planetary
atmospheric escape, directly impacting a planet's potential for habitability.Comment: 23 pages, 15 figures, accepted to Ap
Role of availability of critical aquaculture inputs and community-managed markets on community-based floodplain wetland management
India has extensive wetlands of 2.02 lakh ha. These are basically low-lying floodplain areas. Assam has endowed huge floodplain wetlands and are locally called as Beel. These are one of the most important fishery resources of India providing livelihood to thousands of poor people. The average existing fish production of Assam Beel is only 173 kg/ha/year against its production potential of 1000-1500 kg/ ha/year. A study was conducted in three Beels of the Assam state to see the role of two situational independent variables namely availability of critical aquaculture inputs (X1) and community-managed markets (X2) on dependent variable i.e. knowledge levels of Beel users for community-based Beel fisheries management (Y). The study revealed that community-managed markets was significantly and positively associated (P<0.01) with knowledge levels of Beel users on community-based Beel fisheries management. Also, between these two variables, community managed market (X2) was found to be most significantly contributing variable (‘t’-value – 2.91**) on knowledge levels of Beel users for community-based Beel fisheries management (Y)
- …