13,367 research outputs found

    OH+^+ emission from cometary knots in planetary nebulae

    Get PDF
    We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T∗T_* to be near the upper limit of the range investigated in order to match observed H2_2 and OH+^+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+^+ surface brightnesses for T∗≥100 kKT_* \ge 100 \, {\rm kK}. For T∗<80 kKT_* < 80 \, {\rm kK}, the predicted OH+^+ surface brightness is much lower, consistent with the non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2_2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+^+ and HeH+^+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.Comment: Accepted by MNRAS, 11 pages, 15 figures. Author accepted manuscript. Accepted on 24/04/18. Deposited on 27/04/1

    Modelling the ArH+^+ emission from the Crab Nebula

    Get PDF
    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab Nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic ray ionization rate over the standard interstellar value, ζ0\zeta_0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab Nebula. The observed line surface brightness ratios of the OH+^+ and ArH+^+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic ray ionization rate and a reduced ArH+^+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+^+/OH+^+ line strengths and the observed H2_2 vibration-rotation emission can be reproduced by model filaments with nH=2×104n_{\rm{H}} = 2 \times 10^4 cm−3^{-3}, ζ=107ζ0\zeta = 10^7 \zeta_0 and visual extinctions within the range found for dusty globules in the Crab Nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH=1900n_{\rm{H}} = 1900 cm−3^{-3} underpredict the H2_2 surface brightness, but agree with the ArH+^+ and OH+^+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+^+ rotational emission above detection thresholds, but consideration of the formation timescale suggests that the abundance of this molecule in the Crab Nebula should be lower than the equilibrium values obtained in our analysis.Comment: Accepted by MNRAS. Author accepted manuscript. Accepted on 05/09/2017. Deposited on 05/09/1

    Development of an integrated cognitive behavioral therapy for anxiety and opioid use disorder: Study protocol and methods

    Full text link
    Opioid use disorder is a highly disabling psychiatric disorder, and is associated with both significant functional disruption and risk for negative health outcomes such as infectious disease and fatal overdose. Even among those who receive evidence-based pharmacotherapy for opioid use disorder, many drop out of treatment or relapse, highlighting the importance of novel treatment strategies for this population. Over 60% of those with opioid use disorder also meet diagnostic criteria for an anxiety disorder; however, efficacious treatments for this common co-occurrence have not be established. This manuscript describes the rationale and methods for a behavioral treatment development study designed to develop and test an integrated cognitive-behavioral therapy for those with co-occurring opioid use disorder and anxiety disorders. The aims of the study are (1) to develop and pilot test a new manualized cognitive behavioral therapy for co-occurring opioid use disorder and anxiety disorders, (2) to test the efficacy of this treatment relative to an active comparison treatment that targets opioid use disorder alone, and (3) to investigate the role of stress reactivity in both prognosis and recovery from opioid use disorder and anxiety disorders. Our overarching aim is to investigate whether this new treatment improves both anxiety and opioid use disorder outcomes relative to standard treatment. Identifying optimal treatment strategies for this population are needed to improve outcomes among those with this highly disabling and life-threatening disorder.This study was funded by NIDA grant DA035297. The funding source had no involvement in the study design, analysis and interpretation of data, writing of the report, or the decision to submit the article for publication. (DA035297 - NIDA)Accepted manuscrip

    The dimension of loop-erased random walk in 3D

    Full text link
    We measure the fractal dimension of loop-erased random walk (LERW) in 3 dimensions, and estimate that it is 1.62400 +- 0.00005. LERW is closely related to the uniform spanning tree and the abelian sandpile model. We simulated LERW on both the cubic and face-centered cubic lattices; the corrections to scaling are slightly smaller for the face-centered cubic lattice.Comment: 4 pages, 4 figures. v2 has more data, minor additional change

    The mass, location and heating of the dust in the Cassiopeia A supernova remnant

    Get PDF
    We model the thermal dust emission from dust grains heated by synchrotron radiation and by particle collisions, under conditions appropriate for four different shocked and unshocked gas components of the Cassiopeia A (Cas A) supernova remnant (SNR). By fitting the resulting spectral energy distributions (SEDs) to the observed SNR dust fluxes, we determine the required mass of dust in each component. We find the observed SED can be reproduced by ∼0.6 M⊙\sim 0.6 \, {\rm M_\odot} of silicate grains, the majority of which is in the unshocked ejecta and heated by the synchrotron radiation field. Warmer dust, located in the X-ray emitting reverse shock and blastwave regions, contribute to the shorter wavelength infrared emission but make only a small fraction of the total dust mass. Carbon grains can at most make up ∼25%\sim 25 \% of the total dust mass. Combined with estimates for the gas masses, we obtain dust-to-gas mass ratios for each component, which suggest that the condensation efficiency in the ejecta is high, and that dust in the shocked ejecta clumps is well protected from destruction by sputtering in the reverse shock.Comment: Accepted by MNRAS, 14 pages, 6 figures. Author accepted manuscript. Accepted on 05/02/2019. Deposited on 05/02/201
    • …
    corecore