999 research outputs found

    Practical Statistics for Particle Physics

    Full text link
    This is the write-up of a set of lectures given at the Asia Europe Pacific School of High Energy Physics in Quy Nhon, Vietnam in September 2018, to an audience of PhD students in all branches of particle physics They cover the different meanings of 'probability', particularly frequentist and Bayesian, the binomial, Poisson and Gaussian distributions, hypothesis testing, estimation, errors (including asymmetric and systematic errors) and goodness of fit. Several different methods used in setting upper limits are explained, followed by a discussion on why 5 sigma are conventionally required for a 'discovery'

    Reconstructing the recent failure chronology of a multistage landslide complex using cosmogenic isotope concentrations: St Catherine's Point, UK

    Get PDF
    The pre-existing multistage landslide complex at St Catherine’s Point comprises a series of large rotational and translational failures that form the western section of the Isle of Wight Undercliff, UK. Cosmogenic beryllium and aluminum concentrations extracted from chert samples of the Upper Greensand are used to date the most recent sequential failure events. We use our understanding of the failure mechanics and landslide geomorphology to produce a cosmogenic exposure model that incorporates pre-failure topography into our shielding calculations. This method allowed us to date two successive landslides at the site using 10Be, the most recent of which occurred ~1064 ± 348 (± 1 σ) 10Be years ago, much more recently than was previously thought. An earlier failure event is dated at ~3471 ± 348 10Be years, supporting the hypothesis that the St Catherine’s Point landslide complex was reactivated by relative sea-level rise at the end of the Holocene Climatic Optimum period

    Mid-infrared imaging of supernova 1987a

    Get PDF
    At a distance of 50 kpc, Supernova 1987A is an ideal target to study how a young supernova (SN) evolves in time. Its equatorial ring, filled with material expelled from the progenitor star about 20,000 years ago, has been engulfed with SN blast waves. Shocks heat dust grains in the ring, emitting their energy at mid-infrared (IR) wavelengths We present ground-based 10–18 μm monitoring of the ring of SN 1987A from day 6067 to 12814 at a resolution of 0.5”, together with SOFIA photometry at 10–30 μm. The IR images in the 2000’s (day 6067–7242) showed that the shocks first began brightening the east side of the ring. Later, our mid-IR images from 2017 to 2022 (day 10952–12714) show that dust emission is now fading in the east, while it has brightened on the west side of the ring. Because dust grains are heated in the shocked plasma, which can emit X-rays, the IR and X-ray brightness ratio represent shock diagnostics. Until 2007 the IR to X-ray brightness ratio remained constant over time, and during this time shocks seemed to be largely influencing the east side of the ring. However, since then, the IR to X-ray ratio has been declining, due to increased X-ray brightness. Whether the declining IR brightness is because of dust grains being destroyed or being cooled in the post-shock regions will require more detailed modelling

    A JWST Survey of the Supernova Remnant Cassiopeia A

    Get PDF
    We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal

    A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays

    Get PDF
    The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European Physical Journal

    Measurement of the Michel Parameters in Leptonic Tau Decays

    Get PDF
    The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The Michel parameters are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are extracted. Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European Physical Journal

    The Zwicky Transient Facility: System Overview, Performance, and First Results

    Get PDF
    The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg 2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF’s public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope

    The Zwicky Transient Facility: Science Objectives

    Get PDF
    The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding (“partnership”) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r∼20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects. © 2019. The Astronomical Society of the Pacific
    corecore