13,075 research outputs found

    Preliminary analysis of long-range aircraft designs for future heavy airlift missions

    Get PDF
    A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload

    Mocassin: A fully three-dimensional Monte Carlo photoionization code

    Get PDF
    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitraries geometry and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of tretating on or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this paper. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot et al., 1986; Ferland et al., 1995; Pequignot et al., 2001)\citep{pequignot86,ferland95, pequignot01}. The results obtained for the benchmark cases are satisfactory and are presented in this paper. A performance analysis has also been carried out and is discussed here.Comment: 17 pages, 4 figures, 1 appendix Changes: appendix adde

    Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

    Get PDF
    We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {\sc i} and He {\sc i} recombination spectrum yields an electron temperature of 900\sim 900 K, a factor of ten lower than given by the collisionally excited [O {\sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {\sc ii} λ\lambda4089/λ\lambda4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {\sc ii} ORLs arise from ionized regions with an electron temperature of only 630\sim 630 K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.Comment: 12 pages, 5 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Evidence for Rotation in the Galaxy at z=3.15 Responsible for a Damped Lyman-alpha Absorption System in the Spectrum of Q2233+1310

    Get PDF
    Proof of the existence of a significant population of normal disk galaxies at redshift z>2 would have profound implications for theories of structure formation and evolution. We present evidence based on Keck HIRES observations that the damped Lyman-alpha absorber at z=3.15 toward the quasar Q2233+1310 may well be such an example. Djorgovski et al have recently detected the Lyman-alpha emission from the absorber, which we assume is at the systemic redshift of the absorbing galaxy. By examining the profiles of the metal absorption lines arising from the absorbing galaxy in relation to its systemic redshift, we find strong kinematical evidence for rotation. Therefore the absorber is likely to be a disk galaxy. The inferred circular velocity for the galaxy is >200 km/s. With a separation of ~17 kpc between the galaxy and the quasar sightline, the implied dynamic mass for the galaxy is >1.6x10(11) solar mass. The metallicity of the galaxy is found to be [Fe/H]=-1.4, typical of damped Lyman-alpha galaxies at such redshifts. However, in another damped galactic rotation is evident. In the latter case, the damped Lyman-alpha absorber occurs near the background quasar in redshift so its properties may be influenced by the background quasar. These represent the only two cases at present for which the technique used here may be applied. Future applications of the same technique to a large sample of damped Lyman-alpha galaxies may allow us to determine if a significant population of disk galaxies already existed only a few billion years after the Big Bang.Comment: AASTEX, 2 PS figures, accepted by ApJ, 6 pages total, replaced on 1-22-97, the only change is the enlarged figure

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    The Neon Abundance of Galactic Wolf-Rayet Stars

    Full text link
    The fast, dense winds which characterize Wolf-Rayet (WR) stars obscure their underlying cores, and complicate the verification of evolving core and nucleosynthesis models. Core evolution can be probed by measuring abundances of wind-borne nuclear processed elements, partially overcoming this limitation. Using ground-based mid-infrared spectroscopy and the 12.81um [NeII] emission line measured in four Galactic WR stars, we estimate neon abundances and compare to long-standing predictions from evolved-core models. For the WC star WR121, this abundance is found to be >~11x the cosmic value, in good agreement with predictions. For the three less-evolved WN stars, little neon enhancement above cosmic values is measured, as expected. We discuss the impact of clumping in WR winds on this measurement, and the promise of using metal abundance ratios to eliminate sensitivity to wind density and ionization structure.Comment: Accepted for publication in ApJ; 9 pages, 2 color figures, 4 table

    Fertility control as a means of controlling bovine tuberculosis in badger (Meles meles) populations in south-west England: predictions from a spatial stochastic simulation model

    Get PDF
    A spatial stochastic simulation model was used to assess the potential of fertility control, based on a yet-to-be-developed oral bait-delivered contraceptive directed at females, for the control of bovine tuberculosis in badger populations in south-west England. The contraceptive had a lifelong effect so that females rendered sterile in any particular year remained so for the rest of their lives. The efficacy of fertility control alone repeated annually for varying periods of time was compared with a single culling operation and integrated control involving an initial single cull followed by annually repeated fertility control. With fertility control alone, in no instance was the disease eradicated completely while a viable badger population (mean group size of at least one individual) was still maintained. Near eradication of the disease (less than 1% prevalence) combined with the survival of a minimum viable badger population was only achieved under a very limited set of conditions, either with high efficiency of control (95%) over a short time period (1-3 years) or a low efficiency of control (20%) over an intermediate time period (10-20 years). Under these conditions, it took more than 20 years for the disease to decline to such low levels. A single cull of 80% efficiency succeeded in near eradication of the disease (below 1% prevalence) after a period of 6-8 years, while still maintaining a viable badger population. Integrated strategies reduced disease prevalence more rapidly and to lower levels than culling alone, although the mean badger group size following the onset of control was smaller. Under certain integrated strategies, principally where a high initial cull (80%) was followed by fertility control over a short (1-3 year) time period, the disease could be completely eradicated while a viable badger population was maintained. However, even under the most favourable conditions of integrated control, it took on average more than 12 years following the onset of control for the disease to disappear completely from the badger population. These results show that whilst fertility control would not be a successful strategy for the control of bovine tuberculosis in badgers if used alone, it could be effective if used with culling as part of an integrated strategy. This type of integrated strategy is likely to be more effective in terms of disease eradication than a strategy employing culling alone. However, the high cost of developing a suitable fertility control agent, combined with the welfare and conservation implications, are significant factors which should be taken into account when considering its possible use as a means of controlling bovine tuberculosis in badger populations in the UK
    corecore