The fast, dense winds which characterize Wolf-Rayet (WR) stars obscure
their underlying cores, and complicate the verification of evolving
core and nucleosynthesis models. Core evolution can be probed by
measuring abundances of wind-borne nuclear processed elements,
partially overcoming this limitation. Using ground-based mid-infrared
spectroscopy and the 12.81um [NeII] emission line measured in
four Galactic WR stars, we estimate neon abundances and compare to
long-standing predictions from evolved-core models. For the WC star
WR121, this abundance is found to be >~11x the cosmic
value, in good agreement with predictions. For the three less-evolved
WN stars, little neon enhancement above cosmic values is measured, as
expected. We discuss the impact of clumping in WR winds on this
measurement, and the promise of using metal abundance ratios to
eliminate sensitivity to wind density and ionization structure.Comment: Accepted for publication in ApJ; 9 pages, 2 color figures, 4 table