1,070 research outputs found

    Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry

    Get PDF
    Solid state vapour pressures of a selection of atmospherically important substituted dicarboxylic acids have been measured using Knudsen Effusion Mass Spectrometry (KEMS) over a range of 20 K (298–318 K). Enthalpies of fusion and melting points obtained using Differential Scanning Calorimetry (DSC) were used to obtain sub-cooled liquid vapour pressures. They have been compared to estimation methods used on the E-AIM website. These methods are shown to poorly represent – OH groups in combination with COOH groups. Partitioning calculations have been performed to illustrate the impact of the different estimation methods on organic aerosol mass compared to the use of experimental data

    Caring for the patient, caring for the record: an ethnographic study of 'back office' work in upholding quality of care in general practice

    Get PDF
    © 2015 Swinglehurst and Greenhalgh; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Additional file 1: Box 1. Field notes on summarising (Clover Surgery). Box 2. Extract of document prepared for GPs by summarisers at Clover Surgery. Box 3. Fieldnotes on coding incoming post, Clover (original notes edited for brevity).This work was funded by a research grant from the UK Medical Research Council (Healthcare Electronic Records in Organisations 07/133) and a National Institute of Health Research doctoral fellowship award for DS (RDA/03/07/076). The funders were not involved in the selection or analysis of data nor did they make any contribution to the content of the final manuscript

    Designing an information system for updating land records in Bangladesh: action design ethnographic research (ADER)

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Information Systems (IS) has developed through adapting, generating and applying diverse methodologies, methods, and techniques from reference disciplines. Further, Action Design Research (ADR) has recently developed as a broad research method that focuses on designing and redesigning IT and IS in organizational contexts. This paper reflects on applying ADR in a complex organizational context in a developing country. It shows that ADR requires additional lens for designing IS in such a complex organizational context. Through conducting ADR, it is seen that an ethnographic framework has potential complementarities for understanding complex contexts thereby enhancing the ADR processes. This paper argues that conducting ADR with an ethnographic approach enhances design of IS and organizational contexts. Finally, this paper aims presents a broader methodological framework, Action Design Ethnographic Research (ADER), for designing artefacts as well as IS. This is illustrated through the case of a land records updating service in Bangladesh

    Mental models of high reliability systems

    Full text link
    Reliable performance in complex systems is determined in part by the ade quacy with which mental models of the system capture accurately the dimen sions of system coupling and system complexity. Failure to register coupling and complexity leads the observer to intervene into an imagined technology that does not exist and to convert opportunities for error into actual errors. To decrease the frequency with which this conversion occurs, people can make their models more complex or the systems they monitor less complex. Neither type of change is as daunting as it may appear, and this is illustrated by an analysis of the mental model and system design associated with the invasion of Grenada.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68652/2/10.1177_108602668900300203.pd
    • …
    corecore