164 research outputs found
The stability of adaptive synchronization of chaotic systems
In past works, various schemes for adaptive synchronization of chaotic
systems have been proposed. The stability of such schemes is central to their
utilization. As an example addressing this issue, we consider a recently
proposed adaptive scheme for maintaining the synchronized state of identical
coupled chaotic systems in the presence of a priori unknown slow temporal drift
in the couplings. For this illustrative example, we develop an extension of the
master stability function technique to study synchronization stability with
adaptive coupling. Using this formulation, we examine local stability of
synchronization for typical chaotic orbits and for unstable periodic orbits
within the synchronized chaotic attractor (bubbling). Numerical experiments
illustrating the results are presented. We observe that the stable range of
synchronism can be sensitively dependent on the adaption parameters, and we
discuss the strong implication of bubbling for practically achievable adaptive
synchronization.Comment: 21 pages, 6 figure
Π ΠΎΠ»Ρ ΡΡΠ°Π½ΡΠ³Π»ΡΡΠ°ΠΌΠΈΠ½Π°Π·Ρ 2 Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π±Π°Π»Π°Π½ΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ Π°ΡΡΠΎΡΠ°Π³ΠΈΠ΅ΠΉ ΠΈ Π°ΠΏΠΎΠΏΡΠΎΠ·ΠΎΠΌ Π² ΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ
In normal tissue, cellular homeostasis is largely driven by two catabolic pathways: apoptosis and autophagy. Apoptosis, or programmed cell death, is regulated by pro-apoptotic factors, and promotes the removal of problematic cells. Autophagy, which in turn includes three forms: macro-, micro-, and chaperone-mediated autophagy, can promote both cell survival by selectively removing potentially apoptosis-inducing factors and raising the threshold of stress required for the induction of cell death. Recently, evidence has been accumulating suggesting the existence of common molecular pathways between autophagy and apoptosis, as well as the influence of the extracellular matrix on these processes. One of the important enzymes involved in the coordination and regulation of these processes is transglutaminase 2 (TG2). Different types of TG2 activities are involved in maintaining the dynamic balance between extracellular matrix and intracellular autophagy/apoptosis processes, while dysregulation of these processes may contribute to the pathogenesis of various human diseases, including oncogenesis. For example, TG2 can promote the degradation of pro-apoptotic proteins and the survival of renal cell carcinoma cells under nutrient-deficient conditions by modulating the autophagy process. In cells of various tissues deprived of TG2, aggregates of ubiquitinated proteins and damaged mitochondria are observed, which in turn induces proteotoxic stress and cell death. conversely, the transamidase activity of TG2 was observed to inhibit anti-apoptoticΒ signaling in a human leukemic monocytic lymphoma model. In the present review, a number of important functions of TG2 in oncogenesis are described, along with the dual role of TG2 in modulating such opposite processes as cell survival and cell death.Π Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΉ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π· Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ Π΄Π²ΡΠΌΡ ΠΊΠ°ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΡΡΠΌΠΈ: Π°ΠΏΠΎΠΏΡΠΎΠ·ΠΎΠΌ ΠΈ Π°ΡΡΠΎΡΠ°Π³ΠΈΠ΅ΠΉ. ΠΠΏΠΎΠΏΡΠΎΠ·, ΠΈΠ»ΠΈ Π·Π°ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ Π³ΠΈΠ±Π΅Π»Ρ, ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ ΠΏΡΠΎΠ°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΈ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠ½ΠΈΡΡΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ. ΠΡΡΠΎΡΠ°Π³ΠΈΡ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠ°Ρ Π² ΡΠ΅Π±Ρ 3 ΡΠΎΡΠΌΡ β ΠΌΠ°ΠΊΡΠΎ-, ΠΌΠΈΠΊΡΠΎ- ΠΈ ΡΠ°ΠΏΠ΅ΡΠΎΠ½-ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ Π°ΡΡΠΎΡΠ°Π³ΠΈΡ, β ΠΌΠΎΠΆΠ΅Ρ ΠΊΠ°ΠΊ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ Π²ΡΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΡΡΠ΅ΠΌ ΠΈΠ·Π±ΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎΒ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ ΡΠ°ΠΊΡΠΎΡΠΎΠ², ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ Π²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
Π°ΠΏΠΎΠΏΡΠΎΠ·, ΡΠ°ΠΊ ΠΈ ΠΏΠΎΠ²ΡΡΠ°ΡΡ ΠΏΠΎΡΠΎΠ³ ΡΡΡΠ΅ΡΡΠ°, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄Π»Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠ±ΡΠΈΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΏΡΡΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π°ΡΡΠΎΡΠ°Π³ΠΈΠ΅ΠΉ ΠΈ Π°ΠΏΠΎΠΏΡΠΎΠ·ΠΎΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠΈ ΠΊΠ°ΡΠΏΠ°Π·Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠΊΡΠ° Π½Π° Π΄Π°Π½Π½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ.Β ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½ΡΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ², ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΡ
Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΈ ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΡΡΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π½ΡΠ³Π»ΡΡΠ°ΠΌΠΈΠ½Π°Π·Π° 2 (TG2). Π Π°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠΈΠΏΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠ΅ΠΉ TG2 Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Ρ Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΌ ΠΌΠ°ΡΡΠΈΠΊΡΠΎΠΌ ΠΈ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ Π°ΡΡΠΎΡΠ°Π³ΠΈΠΈ/Π°ΠΏΠΎΠΏΡΠΎΠ·Π°, Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ ΠΈΡ
Π΄Π΅ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅Π·. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ TG2 ΠΌΠΎΠΆΠ΅Ρ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ ΠΏΡΠΎΠ°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π²ΡΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΡΠ΅ΡΠ½ΠΎ-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½ΠΎΠΌΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠ° ΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ², ΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡ Π°ΡΡΠΎΡΠ°Π³ΠΈΠΈ. Π ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΊΠ°Π½Π΅ΠΉ, Π»ΠΈΡΠ΅Π½Π½ΡΡ
TG2, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² ΡΠ±ΠΈΠΊΠ²ΠΈΡΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½Π½ΡΡ
ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠΉ, ΡΡΠΎ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΏΡΠΎΡΠ΅ΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΡΡ ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΡΠΌΠ΅ΡΡΡ. ΠΠ°ΠΎΠ±ΠΎΡΠΎΡ, ΡΡΠ°Π½ΡΠ°ΠΌΠΈΠ΄Π°Π·Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ TG2 Π±ΡΠ»Π° Π·Π°ΠΌΠ΅ΡΠ΅Π½Π° Π² ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π°Π½ΡΠΈΠ°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»Π΅ΠΉΠΊΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ½ΠΎΡΠΈΡΠ°ΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡΠ΅ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π²Π°ΠΆΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ TG2 Π² ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅Π·Π΅, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄ΡΠ΅ΡΠΊΠΈΠ²Π°Π΅ΡΡΡ Π΄Π²ΠΎΠΉΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ ΡΠΎΠ»ΠΈ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° Π² ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΠΊΠ°ΠΊ Π²ΡΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ ΠΈΡ
Π³ΠΈΠ±Π΅Π»Ρ
Π‘Π ΠΠΠΠΠ’ΠΠΠ¬ΠΠ«Π ΠΠΠΠΠΠ ΠΠΠΠΠ‘ΠΠ ΠΠΠΠ’ΠΠ ΠΠ‘Π’Π ΠΠΠΠ-Π ΠΠΠΠ‘Π’ΠΠΠ’ΠΠΠΠ Π ΠΠΠ ΠΠΠΠΠ§ΠΠΠ ΠΠΠΠΠΠ«
The exosomes involvement in the pathogenesis of tumors is based on their property to incorporate into theΒ recipient cells resulting in the both genomic and epigenomic changes.Β Earlier we have shown that exosomesΒ from different types of estrogen-independent breastΒ cancer cells (MCF-7/T developed by long-term tamoxifenΒ treatment, and MCF-7/M)Β developed by metformin treatment were able to transfer resistance to the parentΒ MCF-7Β cells. To elucidate the common features of the both types of resistant exosomes, theΒ proteome andΒ microRNA cargo of the control and both types of the resistant exosomes wereΒ analyzed. Totally, more thanΒ 400 proteins were identified in the exosome samples. Of theseΒ proteins, only two proteins, DMBT1 (Deleted inΒ Malignant Brain Tumors 1) and THBS1Β (Thrombospondin-1), were commonly expressed in the both resistantΒ exosomes (less thanΒ 5% from total DEPs) demonstrating the unique protein composition of each type of theΒ resistant exosomes. The comparative analysis of the miRNA differentially expressed inΒ the both MCF-7/T andΒ MCF-7/M resistant exosomes revealed 180 up-regulated and 202Β down-regulated miRNAs. Among them,Β 4 up-regulated and 8 down-regulated miRNAs wereΒ associated with progression of hormonal resistance ofΒ breast tumors. The bioinformaticalΒ analysis of 4 up-regulated exosomal miRNAs revealed 2 miRNAs, mir-Β 101and mir-181b, which up-regulated PI3K signalingΒ supporting the key role of PI3K/Akt in the developmentΒ of the resistant phenotype of breast cancer cells.Π£ΡΠ°ΡΡΠΈΠ΅ ΡΠΊΠ·ΠΎΡΠΎΠΌ Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° ΠΈΡ
ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡ Π²Π½ΡΡΡΡΒ ΠΊΠ»Π΅ΡΠΎΠΊ-ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ², Π²ΡΠ·ΡΠ²Π°Ρ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ
ΠΊΠ°ΡΠΊΠ°Π΄ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΏΠΈΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π Π°Π½Π΅Π΅Β ΠΌΡΒ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ ΡΠΊΠ·ΠΎΡΠΎΠΌΡ, ΠΏΡΠΎΠ΄ΡΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠ°ΠΌΠΈ ΡΡΡΡΠΎΠ³Π΅Π½-Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ
ΡΡΠ±Π»ΠΈΠ½ΠΈΠΉΒ ΠΊΠ»Π΅ΡΠΎΠΊΒ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ (MCF-7/T, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊΒ Π²Β ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ Π°Π½ΡΠΈΡΡΡΡΠΎΠ³Π΅Π½Π° ΡΠ°ΠΌΠΎΠΊΡΠΈΡΠ΅Π½Π°, ΠΈ MCF-7/M, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡΒ ΠΊΠ»Π΅ΡΠΎΠΊ ΡΒ ΠΌΠ΅ΡΡΠΎΡΠΌΠΈΠ½ΠΎΠΌ), ΡΠΏΠΎΡΠΎΠ±Π½Ρ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡ Π² ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
MCF-7.Β Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅Β Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΡΠ°Π²Π° ΡΠΊΠ·ΠΎΡΠΎΠΌ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
Β ΠΊΠ»Π΅ΡΠΎΠΊ Π±ΡΠ» ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Β ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΡΠ΅ΠΎΠΌΠ° ΠΈ ΠΏΡΠΎΡΠΈΠ»Ρ ΠΌΠΈΠΊΡΠΎΠ ΠΠ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ
ΡΠΊΠ·ΠΎΡΠΎΠΌ ΠΈΒ ΡΠΊΠ·ΠΎΡΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΎΡΒ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΡΡΠ±Π»ΠΈΠ½ΠΈΠΉ. Π ΡΠ΅Π»ΠΎΠΌ Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΡΠΊΠ·ΠΎΡΠΎΠΌ Π±ΡΠ»ΠΎ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΎΒ Π±ΠΎΠ»Π΅Π΅ 400 Π±Π΅Π»ΠΊΠΎΠ², ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
Β ΡΠΎΠ»ΡΠΊΠΎ 2 Π±Π΅Π»ΠΊΠ°, DMBT1 (Deleted in Malignant Brain Tumors 1) ΠΈ THBS1Β (Thrombospondin-1), Π±ΡΠ»ΠΈΒ Π³ΠΈΠΏΠ΅ΡΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Ρ Π² ΠΎΠ±ΠΎΠΈΡ
ΡΠΈΠΏΠ°Ρ
ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΡΠΊΠ·ΠΎΡΠΎΠΌ (ΠΌΠ΅Π½Π΅Π΅ 5 % ΠΎΡΒ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π±Π΅Π»ΠΊΠΎΠ²,Β Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π² ΡΠΊΠ·ΠΎΡΠΎΠΌΠ°Ρ
ΡΠ΅Π·ΠΈΡΡΠ΅ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ), ΡΡΠΎΒ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ± ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΌΒ ΡΠΎΡΡΠ°Π²Π΅ ΡΠΊΠ·ΠΎΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ² Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ.Β Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ·Β ΡΠΎΡΡΠ°Π²Π° ΠΌΠΈΠΊΡΠΎΠ ΠΠ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π² ΠΎΠ±ΠΎΠΈΡ
Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ
Β ΡΠΊΠ·ΠΎΡΠΎΠΌ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ,Β Π²ΡΡΠ²ΠΈΠ» 180 Π³ΠΈΠΏΠ΅ΡΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠΈΠΊΡΠΎΠ ΠΠ ΠΈ 202 ΠΌΠΈΠΊΡΠΎΠ ΠΠ Ρ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΉ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠ΅ΠΉ. Π‘ΡΠ΅Π΄ΠΈ Π½ΠΈΡ
4Β Π³ΠΈΠΏΠ΅ΡΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈ 8 Π³ΠΈΠΏΠΎΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠΈΠΊΡΠΎΠ ΠΠΒ ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡ Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Ρ Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌΒ Π³ΠΎΡΠΌΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ.Β ΠΠΈΠΎΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· 4Β Π³ΠΈΠΏΠ΅ΡΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠΈΠΊΡΠΎΠ ΠΠ Π²ΡΡΠ²ΠΈΠ» 2 ΠΌΠΈΠΊΡΠΎΠ ΠΠ, mir-101ΠΈΒ mir-181b, ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΡ
Π² ΡΡΠΈΠΌΡΠ»ΡΡΠΈΠΈ PI3KΒ ΡΠΈΠ³Π½Π°Π»ΠΈΠ½Π³Π°, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡ ΠΎ Π²Π°ΠΆΠ½ΠΎΠΉ ΡΠΎΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ Π²Β ΡΠ°Π·Π²ΠΈΡΠΈΠΈ Π³ΠΎΡΠΌΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈΒ ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ.
Modulation of EGFR activity by molecularly imprinted polymer nanoparticles targeting intracellular epitopes
In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy
How is Democracy Applied within the EU: Combining Elements of Traditional and Innovative Democratic Practice
The EU represents a new and complex political system which, according to
numerous social scholars, suffers from the so-called democratic deficit. The basic
argument behind this claim is that citizens lack control of the EU because,
within its political system, national parliaments of member states possess only
limited powers which have not been adequately compensated through steady
empowerment of the European parliament (EP). Starting from this notion, the
paper will explore the application of various concepts of democracy within the
political system of the EU. First and foremost, it will analyse representative democracy
in the EU, which stands as a foundation of all contemporary democratic
systems. However, the paper will not stop at representative democracy, but
it will also look at participatory, direct and deliberative democracy as applied
within the political system of the EU. These concepts of democracy can only be
viewed in relation and as an addition to representative democracy, but their application
is very important for the EU due to limited possibilities for developing
representative democracy at the supranational level. The paper will argue that,
with regard to participatory and deliberative democracy, the EU can be viewed
in many respects as a showcase for the national level, because it successfully
developed various mechanisms related to implementation of these concepts.
Particular attention will be paid to the Lisbon Treaty, which clarified many uncertainties
that previously burdened the application of democracy within the
EU. It will be argued that with the Lisbon Treaty the classic argument about the
EUβs democratic deficit lost some of its appeal, because this treaty transformed
the EP from secondary to equal participant in the EUβs legislative process
Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity
Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a βbridgeβ mechanism with upstream sequences
TSPYL2 Is Important for G1 Checkpoint Maintenance upon DNA Damage
Nucleosome assembly proteins play important roles in chromatin remodeling, which determines gene expression, cell proliferation and terminal differentiation. Testis specific protein, Y-encoded-like 2 (TSPYL2) is a nucleosome assembly protein expressed in neuronal precursors and mature neurons. Previous studies have shown that TSPYL2 binds cyclin B and inhibits cell proliferation in cultured cells suggesting a role in cell cycle regulation. To investigate the physiological significance of TSPYL2 in the control of cell cycle, we generated mice with targeted disruption of Tspyl2. These mutant mice appear grossly normal, have normal life span and do not exhibit increased tumor incidence. To define the role of TSPYL2 in DNA repair, checkpoint arrest and apoptosis, primary embryonic fibroblasts and thymocytes from Tspyl2 deficient mice were isolated and examined under unperturbed and stressed conditions. We show that mutant fibroblasts are impaired in G1 arrest under the situation of DNA damage induced by gamma irradiation. This is mainly attributed to the defective activation of p21 transcription despite proper p53 protein accumulation, suggesting that TSPYL2 is additionally required for p21 induction. TSPYL2 serves a biological role in maintaining the G1 checkpoint under stress condition
- β¦