323 research outputs found

    The broadening of Fe II lines by neutral hydrogen collisions

    Full text link
    Data for the broadening of 24188 Fe II lines by collisions with neutral hydrogen atoms have been computed using the theory of Anstee & O'Mara as extended to singly ionised species and higher orbital angular momentum states by Barklem & O'Mara. Data have been computed for all Fe II lines between observed energy levels in the line lists of Kurucz with log gf > -5 for which the theory is applicable. The variable energy debt parameter Ep used in computing the second order perturbation theory potential is chosen to be consistent with the long range dispersion interaction constant C6 computed using the f-values from Kurucz.Comment: Accepted for A&A. 5 pages, 5 figures, 2 electronic tables. Tables will be available via CDS; presently also at http://www.astro.uu.se/~barklem/papers/fe2_data.tar.g

    Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Full text link
    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000 - 20000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant.Comment: Accepted by A&

    Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Full text link
    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000 - 20000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates.Comment: Accepted for A&A. Data will be made available at CDS. Is available here: https://github.com/barklem/public-data. Replaced version corrects url and adds it to the pape

    A unified numerical model of collisional depolarization and broadening rates due to hydrogen atom collisions

    Full text link
    Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for collisional broadening are usually more readily available. Recent work by Sahal-Br\'echot and Bommier concluded that despite underlying similarities in the physics of collisional broadening and depolarization processes, relationships between them are not possible to derive purely analytically. We aim to derive accurate numerical relationships between the collisional broadening rates and the collisional depolarization and polarization transfer rates due to hydrogen atom collisions. Such relationships would enable accurate and efficient estimation of collisional data for solar applications. Using earlier results for broadening and depolarization processes based on general (i.e. not specific to a given atom), semi-classical calculations employing interaction potentials from perturbation theory, genetic programming (GP) has been used to fit the available data and generate analytical functions describing the relationships between them. The predicted relationships from the GP-based model are compared with the original data to estimate the accuracy of the method.Comment: 10 pages, 7 figures, Accepted for publication in Astronomy & Astrophysic

    Non-LTE Balmer line formation in late-type spectra: Effects of atomic processes involving hydrogen atoms

    Get PDF
    (*** abridged ***) Context: The wings of Balmer lines are often used as effective temperature diagnostics for late-type stars under the assumption they form in local thermodynamic equilibrium. Aims: Our goal is to investigate the non-LTE formation of Balmer lines in late-type stellar atmospheres, to establish if the assumption of LTE is justified. Furthermore, we aim to determine which collision processes are important for the problem; in particular, the role of collision processes with hydrogen atoms is investigated. Method: A model hydrogen atom for non-LTE calculations has been constructed accounting for various collision processes using the best available data from the literature. The processes included are inelastic collisions with electrons and hydrogen atoms, mutual neutralisation and Penning ionisation. Non-LTE calculations are performed, and the relative importance of the collision processes is investigated. Results: Our calculations show electron collisions alone are not sufficient to establish LTE for the formation of Balmer line wings. The role of inelastic collisions with neutral hydrogen is unclear. The available data for these processes is of questionable quality, and different prescriptions for the rate coefficents give significantly different results for the Balmer line wings. Conclusions: Improved calculations or experimental data are needed for excitation and, particularly, ionisation of hydrogen atoms in low-lying states by hydrogen atom impact at near threshold energies. Until such data are available, the assumption of LTE for the formation of Balmer line wings in late-type stars is questionable.Comment: Accepted for A&A; 12 pages, 11 figure

    Electron-impact excitation of neutral oxygen

    Get PDF
    Aims: To calculate transition rates from ground and excited states in neutral oxygen atoms due to electron collisions for non-LTE modelling of oxygen in late-type stellar atmospheres, thus enabling reliable interpretation of oxygen lines in stellar spectra. Methods: A 38-state R-matrix calculation in LS-coupling has been performed. Basis orbitals from the literature (Thomas et al.) are adopted, and a large set of configurations are included to obtain good representations of the target wavefunctions. Rate coefficients are calculated by averaging over a Maxwellian velocity distribution. Results: Estimates for the cross sections and rate coefficients are presented for transitions between the seven lowest LS states of neutral oxygen. The cross sections for excitation from the ground state compare well with existing experimental and recent theoretical results.Comment: Accepted for A&A; 9 pages, 2 figures, 6 table

    Detailed analysis of Balmer lines in cool dwarf stars

    Get PDF
    An analysis of H alpha and H beta spectra in a sample of 30 cool dwarf and subgiant stars is presented using MARCS model atmospheres based on the most recent calculations of the line opacities. A detailed quantitative comparison of the solar flux spectra with model spectra shows that Balmer line profile shapes, and therefore the temperature structure in the line formation region, are best represented under the mixing length theory by any combination of a low mixing-length parameter alpha and a low convective structure parameter y. A slightly lower effective temperature is obtained for the sun than the accepted value, which we attribute to errors in models and line opacities. The programme stars span temperatures from 4800 to 7100 K and include a small number of population II stars. Effective temperatures have been derived using a quantitative fitting method with a detailed error analysis. Our temperatures find good agreement with those from the Infrared Flux Method (IRFM) near solar metallicity but show differences at low metallicity where the two available IRFM determinations themselves are in disagreement. Comparison with recent temperature determinations using Balmer lines by Fuhrmann (1998, 2000), who employed a different description of the wing absorption due to self-broadening, does not show the large differences predicted by Barklem et al. (2000). In fact, perhaps fortuitously, reasonable agreement is found near solar metallicity, while we find significantly cooler temperatures for low metallicity stars of around solar temperature.Comment: 17 pages, 9 figures, to appear in A&

    Carbon and oxygen in metal-poor halo stars

    Full text link
    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine metal-poor turn-off stars. For the first time, we take into account three-dimensional (3D) hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE HÎČ\beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.750.75 dex with decreasing [Fe/H] down to −3.0-3.0 dex. As such [C/O] monotonically decreases towards decreasing [O/H], in contrast to previous findings, mainly by virtue of less severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter

    Inelastic O+H collisions and the OI 777nm solar centre-to-limb variation

    Full text link
    The OI 777 nm triplet is a key diagnostic of oxygen abundances in the atmospheres of FGK-type stars; however it is sensitive to departures from local thermodynamic equilibrium (LTE). The accuracy of non-LTE line formation calculations has hitherto been limited by errors in the inelastic O+H collisional rate coefficients: several recent studies have used the so-called Drawin recipe, albeit with a correction factor SH\mathrm{S_{H}} that is calibrated to the solar centre-to-limb variation of the triplet. We present a new model oxygen atom that incorporates inelastic O+H collisional rate coefficients using an asymptotic two-electron model based on linear combinations of atomic orbitals, combined with a free electron model, based on the impulse approximation. Using a 3D hydrodynamic stagger model solar atmosphere and 3D non-LTE line formation calculations, we demonstrate that this physically-motivated approach is able to reproduce the solar centre-to-limb variation of the triplet to 0.02 dex, without any calibration of the inelastic collisional rate coefficients or other free parameters. We infer logâĄÏ”O=8.69±0.03\log\epsilon_{\mathrm{O}}=8.69\pm0.03 from the triplet alone, strengthening the case for a low solar oxygen abundance.Comment: 13 pages, 8 figures; published in Astronomy & Astrophysic
    • 

    corecore