4 research outputs found

    Further Insights into the Gut Microbiota of Cow’s Milk Allergic Infants: Analysis of Microbial Functionality and Its Correlation with Three Fecal Biomarkers

    Get PDF
    Cow’s milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, α-1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow’s milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers (α-1 antitrypsin, lactoferrin, and calprotectin) by an integrative approach. We have observed differences between AI and CI groups in terms of fecal protein levels and metagenomic analysis. Our findings suggest that AI have altered glycerophospholipid metabolism as well as higher levels of lactoferrin and calprotectin that could be explained by their allergic status.This research was funded by Instituto de Salud Carlos III (PI17/01087 and PI20/01366) and Fundación Sociedad Española de Alergia e Inmunología Clínica (FSEAIC_2016). It was co-funded by the European Regional Development Fund “Investing in your future” for the thematic network and co-operative research centers ARADyAL RD16/0006/0015 and RD16/0006/0026. T.B-T is supported by FPI-CEU predoctoral fellowship. D.B. acknowledges financial support from Instituto de Salud Carlos III (PI19/00044)

    Unravelling the Gut Microbiota of Cow’s Milk–Allergic Infants, Their Mothers, and Their Grandmothers

    Get PDF
    The gut microbiome constitutes a highly complex ecosystem in which bacteria are the most prominent components. Around 70% of primary colonization of the gut microbiota is maternal in origin [1], and the first 1000 days of life are crucial for the development of the intestinal microbiota [2]. Despite its early formation, the gut microbiota is highly dynamic and dependent on host-associated confounding factors such as age, diet, antibiotics, lifestyle, and environmental conditions [3,4]. Alterations in gut microbiota have been described in people with different types of allergy, including cow’s milk allergy (CMA)This work was supported by Instituto de Salud Carlos III (PI17/01087) and Fundación Sociedad Española de Alergia e Inmunología Clínica (FSEAIC_2016). It was cofunded by the European Regional Development Fund “Investing in your future” for the Thematic Network and Co-operative Research Centers ARADyAL RD16/0006/0015 and RD16/0006/0026. It was additionally supported by the Ministry of Science, Innovation in Spain (PCI2018-092930), cofunded by the European program ERA HDHL - Nutrition & the Epigenome, project Dietary Intervention in Food Allergy: Microbiome, Epigenetic and Metabolomic interactions (DIFAMEM). DR and EZ-V acknowledge funding from the Spanish Ministry of Science, Innovation and Universities (RTI2018-095166-B-I00). CU acknowledges funding from the Spanish Ministry of Economy (SAF2017-90083-R). TCB-T thanks CEUInternational Doctoral School (CEINDO) for his fellowship

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac

    Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation

    No full text
    corecore