27 research outputs found

    Broadening the ecological mindset

    Get PDF
    Over the past three decades, the Harvard Forest Summer Research Program in Ecology (HF-SRPE) has been at the forefront of expanding the ecological tent for minoritized or otherwise marginalized students. By broadening the definition of ecology to include fields such as data science, software engineering, and remote sensing, we attract a broader range of students, including those who may not prioritize field experiences or who may feel unsafe working in rural or urban field sites. We also work towards a more resilient society in which minoritized or marginalized students can work safely, in part by building teams of students and mentors. Teams collaborate on projects that require a diversity of approaches and create opportunities for students and mentors alike to support one another and share leadership. Finally, HF-SRPE promotes an expanded view of what it means to become an ecologist. We value and support diverse career paths for ecologists to work in all parts of society, to diversify the face of ecology, and to bring different perspectives together to ensure innovations in environmental problem solving for our planet

    Comparing Tree‐Ring and Permanent Plot Estimates of Aboveground Net Primary Production in Three Eastern U.S. Forests

    Get PDF
    Forests account for a large portion of sequestered carbon, much of which is stored as wood in trees. The rate of carbon accumulation in aboveground plant material, or aboveground net primary productivity (aNPP), quantifies annual to decadal variations in forest carbon sequestration. Permanent plots are often used to estimate aNPP but are usually not annually resolved and take many years to develop a long data set. Tree rings are a unique and infrequently used source for measuring aNPP, and benefit from fine spatial (individual trees) and temporal (annual) resolution. Because of this precision, tree rings are complementary to permanent plots and the suite of tools used to study forest productivity. Here we evaluate whether annual estimates of aNPP developed from tree rings approximate estimates derived from colocated permanent plots. We studied a lowland evergreen (Howland, Maine), mixed deciduous (Harvard Forest, Massachusetts), and mixed mesophytic (Fernow, West Virginia) forest in the eastern United States. Permanent plots at the sites cover an area of 2–3 ha, and we use these areas as benchmarks indicative of the forest stand. We simulate random draws of permanent plot subsets to describe the distribution of aNPP estimates given a sampling area size equivalent to the tree-ring plots. Though mean tree-ring aNPP underestimates permanent plot aNPP slightly at Howland and Fernow and overestimates at Harvard Forest when compared with the entire permanent plot, it is within the 95% confidence interval of the random draws of equal-sized sampling area at all sites. To investigate whether tree-ring aNPP can be upscaled to the stand, we conducted a second random draw of permanent plot subsets simulating a twofold increase in sampling area. aNPP estimates from this distribution were not significantly different from results of the initial sampling area, though variance decreased as sampling area approaches stand area. Despite several concerns to consider when using tree rings to reconstruct aNPP (e.g., upscaling, allometric, and sampling uncertainties), the benefits are apparent, and we call for the continued application of tree rings in carbon cycle studies across a broader range of species diversity, productivity, and disturbance histories to fully develop this potential

    Comparing Tree-Ring And Permanent Plot Estimates Of Aboveground Net Primary Production In Three Eastern U.S. Forests

    Get PDF
    Forests account for a large portion of sequestered carbon, much of which is stored as wood in trees. The rate of carbon accumulation in aboveground plant material, or aboveground net primary productivity (aNPP), quantifies annual to decadal variations in forest carbon sequestration. Permanent plots are often used to estimate aNPP but are usually not annually resolved and take many years to develop a long data set. Tree rings are a unique and infrequently used source for measuring aNPP, and benefit from fine spatial (individual trees) and temporal (annual) resolution. Because of this precision, tree rings are complementary to permanent plots and the suite of tools used to study forest productivity. Here we evaluate whether annual estimates of aNPP developed from tree rings approximate estimates derived from colocated permanent plots. We studied a lowland evergreen (Howland, Maine), mixed deciduous (Harvard Forest, Massachusetts), and mixed mesophytic (Fernow, West Virginia) forest in the eastern United States. Permanent plots at the sites cover an area of 2-3 ha, and we use these areas as benchmarks indicative of the forest stand. We simulate random draws of permanent plot subsets to describe the distribution of aNPP estimates given a sampling area size equivalent to the tree-ring plots. Though mean tree-ring aNPP underestimates permanent plot aNPP slightly at Howland and Fernow and overestimates at Harvard Forest when compared with the entire permanent plot, it is within the 95% confidence interval of the random draws of equal-sized sampling area at all sites. To investigate whether tree-ring aNPP can be upscaled to the stand, we conducted a second random draw of permanent plot subsets simulating a twofold increase in sampling area. aNPP estimates from this distribution were not significantly different from results of the initial sampling area, though variance decreased as sampling area approaches stand area. Despite several concerns to consider when using tree rings to reconstruct aNPP (e.g., upscaling, allometric, and sampling uncertainties), the benefits are apparent, and we call for the continued application of tree rings in carbon cycle studies across a broader range of species diversity, productivity, and disturbance histories to fully develop this potential

    Defoliation severity is positively related to soil solution nitrogen availability and negatively related to soil nitrogen concentrations following a multi-year invasive insect irruption

    Get PDF
    Understanding connections between ecosystem nitrogen (N) cycling and invasive insect defoliation could facilitate the prediction of disturbance impacts across a range of spatial scales. In this study we investigated relationships between ecosystem N cycling and tree defoliation during a recent 2015–18 irruption of invasive gypsy moth caterpillars (Lymantria dispar), which can cause tree stress and sometimes mortality following multiple years of defoliation. Nitrogen is a critical nutrient that limits the growth of caterpillars and plants in temperate forests. In this study, we assessed the associations among N concentrations, soil solution N availability and defoliation intensity by L. dispar at the scale of individual trees and forest plots. We measured leaf and soil N concentrations and soil solution inorganic N availability among individual red oak trees (Quercus rubra) in Amherst, MA and across a network of forest plots in Central Massachusetts. We combined these field data with estimated defoliation severity derived from Landsat imagery to assess relationships between plot-scale defoliation and ecosystem N cycling. We found that trees in soil with lower N concentrations experienced more herbivory than trees in soil with higher N concentrations. Additionally, forest plots with lower N soil were correlated with more severe L. dispar defoliation, which matched the tree-level relationship. The amount of inorganic N in soil solution was strongly positively correlated with defoliation intensity and the number of sequential years of defoliation. These results suggested that higher ecosystem N pools might promote the resistance of oak trees to L. dispar defoliation and that defoliation severity across multiple years is associated with a linear increase in soil solution inorganic N
    corecore