146 research outputs found

    Introducing a Calculus of Effects and Handlers for Natural Language Semantics

    Get PDF
    In compositional model-theoretic semantics, researchers assemble truth-conditions or other kinds of denotations using the lambda calculus. It was previously observed that the lambda terms and/or the denotations studied tend to follow the same pattern: they are instances of a monad. In this paper, we present an extension of the simply-typed lambda calculus that exploits this uniformity using the recently discovered technique of effect handlers. We prove that our calculus exhibits some of the key formal properties of the lambda calculus and we use it to construct a modular semantics for a small fragment that involves multiple distinct semantic phenomena

    Broadening the ecological mindset

    Get PDF
    Over the past three decades, the Harvard Forest Summer Research Program in Ecology (HF-SRPE) has been at the forefront of expanding the ecological tent for minoritized or otherwise marginalized students. By broadening the definition of ecology to include fields such as data science, software engineering, and remote sensing, we attract a broader range of students, including those who may not prioritize field experiences or who may feel unsafe working in rural or urban field sites. We also work towards a more resilient society in which minoritized or marginalized students can work safely, in part by building teams of students and mentors. Teams collaborate on projects that require a diversity of approaches and create opportunities for students and mentors alike to support one another and share leadership. Finally, HF-SRPE promotes an expanded view of what it means to become an ecologist. We value and support diverse career paths for ecologists to work in all parts of society, to diversify the face of ecology, and to bring different perspectives together to ensure innovations in environmental problem solving for our planet

    Comparing Tree‐Ring and Permanent Plot Estimates of Aboveground Net Primary Production in Three Eastern U.S. Forests

    Get PDF
    Forests account for a large portion of sequestered carbon, much of which is stored as wood in trees. The rate of carbon accumulation in aboveground plant material, or aboveground net primary productivity (aNPP), quantifies annual to decadal variations in forest carbon sequestration. Permanent plots are often used to estimate aNPP but are usually not annually resolved and take many years to develop a long data set. Tree rings are a unique and infrequently used source for measuring aNPP, and benefit from fine spatial (individual trees) and temporal (annual) resolution. Because of this precision, tree rings are complementary to permanent plots and the suite of tools used to study forest productivity. Here we evaluate whether annual estimates of aNPP developed from tree rings approximate estimates derived from colocated permanent plots. We studied a lowland evergreen (Howland, Maine), mixed deciduous (Harvard Forest, Massachusetts), and mixed mesophytic (Fernow, West Virginia) forest in the eastern United States. Permanent plots at the sites cover an area of 2–3 ha, and we use these areas as benchmarks indicative of the forest stand. We simulate random draws of permanent plot subsets to describe the distribution of aNPP estimates given a sampling area size equivalent to the tree-ring plots. Though mean tree-ring aNPP underestimates permanent plot aNPP slightly at Howland and Fernow and overestimates at Harvard Forest when compared with the entire permanent plot, it is within the 95% confidence interval of the random draws of equal-sized sampling area at all sites. To investigate whether tree-ring aNPP can be upscaled to the stand, we conducted a second random draw of permanent plot subsets simulating a twofold increase in sampling area. aNPP estimates from this distribution were not significantly different from results of the initial sampling area, though variance decreased as sampling area approaches stand area. Despite several concerns to consider when using tree rings to reconstruct aNPP (e.g., upscaling, allometric, and sampling uncertainties), the benefits are apparent, and we call for the continued application of tree rings in carbon cycle studies across a broader range of species diversity, productivity, and disturbance histories to fully develop this potential

    Comparing Tree-Ring And Permanent Plot Estimates Of Aboveground Net Primary Production In Three Eastern U.S. Forests

    Get PDF
    Forests account for a large portion of sequestered carbon, much of which is stored as wood in trees. The rate of carbon accumulation in aboveground plant material, or aboveground net primary productivity (aNPP), quantifies annual to decadal variations in forest carbon sequestration. Permanent plots are often used to estimate aNPP but are usually not annually resolved and take many years to develop a long data set. Tree rings are a unique and infrequently used source for measuring aNPP, and benefit from fine spatial (individual trees) and temporal (annual) resolution. Because of this precision, tree rings are complementary to permanent plots and the suite of tools used to study forest productivity. Here we evaluate whether annual estimates of aNPP developed from tree rings approximate estimates derived from colocated permanent plots. We studied a lowland evergreen (Howland, Maine), mixed deciduous (Harvard Forest, Massachusetts), and mixed mesophytic (Fernow, West Virginia) forest in the eastern United States. Permanent plots at the sites cover an area of 2-3 ha, and we use these areas as benchmarks indicative of the forest stand. We simulate random draws of permanent plot subsets to describe the distribution of aNPP estimates given a sampling area size equivalent to the tree-ring plots. Though mean tree-ring aNPP underestimates permanent plot aNPP slightly at Howland and Fernow and overestimates at Harvard Forest when compared with the entire permanent plot, it is within the 95% confidence interval of the random draws of equal-sized sampling area at all sites. To investigate whether tree-ring aNPP can be upscaled to the stand, we conducted a second random draw of permanent plot subsets simulating a twofold increase in sampling area. aNPP estimates from this distribution were not significantly different from results of the initial sampling area, though variance decreased as sampling area approaches stand area. Despite several concerns to consider when using tree rings to reconstruct aNPP (e.g., upscaling, allometric, and sampling uncertainties), the benefits are apparent, and we call for the continued application of tree rings in carbon cycle studies across a broader range of species diversity, productivity, and disturbance histories to fully develop this potential
    corecore