4 research outputs found

    Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier

    Get PDF
    Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions

    Hyperoxia evokes pericyte-mediated capillary constriction

    Get PDF
    Oxygen supplementation is regularly prescribed to patients to treat or prevent hypoxia. However, excess oxygenation can lead to reduced cerebral blood flow (CBF) in healthy subjects and worsen the neurological outcome of critically ill patients. Most studies on the vascular effects of hyperoxia focus on arteries but there is no research on the effects on cerebral capillary pericytes, which are major regulators of CBF. Here, we used bright-field imaging of cerebral capillaries and modeling of CBF to show that hyperoxia (95% superfused O2) led to an increase in intracellular calcium level in pericytes and a significant capillary constriction, sufficient to cause an estimated 25% decrease in CBF. Although hyperoxia is reported to cause vascular smooth muscle cell contraction via generation of reactive oxygen species (ROS), endothelin-1 and 20-HETE, we found that increased cytosolic and mitochondrial ROS levels and endothelin release were not involved in the pericyte-mediated capillary constriction. However, a 20-HETE synthesis blocker greatly reduced the hyperoxia-evoked capillary constriction. Our findings establish pericytes as regulators of CBF in hyperoxia and 20-HETE synthesis as an oxygen sensor in CBF regulation. The results also provide a mechanism by which clinically administered oxygen can lead to a worse neurological outcome

    Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome.

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the Lmna G609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria.This work was supported by grants from The Progeria Research Foundation (PRF 2016-65) and the Spanish MINECO (PID2019-106279RB-I00, PID2019-108489RBI00). The authors thank Fundación La Caixa (A.G.), CEI Moncloa (N.I.M.-R.), MINECO (F.J.O.-N. and M.B.) and Ministerio de Ciencia, Innovación y Universidades (N.K.-F.) for predoctoral fellowships. The authors thank C. López-Otín for kindly donating LmnaG609G/G609G progeroid and their corresponding wild-type fibroblasts and UCM’s CAIs Cytometry and Fluorescence Microscopy, Genomics, NMR, and Mass Spectrometry, for their assistance. The CNIC is supported by the Ministerio de Ciencia e Innovación, the Instituto de Salud Carlos III, and the pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant SEV-2015- 0505). The generation of the antiprogerin antibody was funded by the Wellcome Trust (098291/Z/12/Z to S.N.).S

    Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis.

    Get PDF
    Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine "depot" in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.This work was supported by funds from the British Heart Foundation (FS/14/3/30518 to T.G. and S.N.), the People Programme (Marie Curie Actions) of the EU’s 7th Framework Programme (FP7/2007-2013) under REA grant agreement 608765 (to T.G. and S.N.), and by the Wellcome Trust (098291/Z/12/Z to S.N.). D.S. is supported by the CNIC, SAF2016-79040-R from the Spanish Ministerio de Ciencia, and ERC-2016-CoG 725091 from the European Research Council. M.T. and A.R. are supported by the Sinergia grant CRSII3_160719 of the Swiss National Science Foundation. G.G. is supported by the Wellcome Trust and the MRC. U.H.v.A. and A.T. are supported by the Ragon Institute of MGH, MIT and Harvard and the HMS Center for Immune Imaging
    corecore