94 research outputs found

    Design and implementation of an international, multi-arm, multi-stage platform master protocol for trials of novel SARS-CoV-2 antiviral agents: Therapeutics for Inpatients with COVID-19 (TICO/ACTIV-3)

    Get PDF
    BACKGROUND/AIMS: Safe and effective therapies for COVID-19 are urgently needed. In order to meet this need, the Accelerating COVID-19 Therapeutic Interventions and Vaccines public-private partnership initiated the Therapeutics for Inpatients with COVID-19. Therapeutics for Inpatients with COVID-19 is a multi-arm, multi-stage platform master protocol, which facilitates the rapid evaluation of the safety and efficacy of novel candidate antiviral therapeutic agents for adults hospitalized with COVID-19. Five agents have so far entered the protocol, with rapid answers already provided for three of these. Other agents are expected to enter the protocol throughout 2021. This protocol contains a number of key design and implementation features that, along with challenges faced by the protocol team, are presented and discussed. METHODS: Three clinical trial networks, encompassing a global network of clinical sites, participated in the protocol development and implementation. Therapeutics for Inpatients with COVID-19 utilizes a multi-arm, multi-stage design with an agile and robust approach to futility and safety evaluation at 300 patients enrolled, with subsequent expansion to full sample size and an expanded target population if the agent shows an acceptable safety profile and evidence of efficacy. Rapid recruitment to multiple agents is enabled through the sharing of placebo, the confining of agent-specific information to protocol appendices, and modular consent forms. In collaboration with the Food and Drug Administration, a thorough safety data collection and Data and Safety Monitoring Board schedule was developed for the study of potential therapeutic agents with limited in-human data in hospitalized patients with COVID-19. RESULTS: As of 8 August 2021, five agents have entered the Therapeutics for Inpatients with COVID-19 master protocol and a total of 1909 participants have been randomized to one of these agents or matching placebo. There were a number of challenges faced by the study team that needed to be overcome in order to successfully implement Therapeutics for Inpatients with COVID-19 across a global network of sites. These included ensuring drug supply and reliable recruitment allowing for changing infection rates across the global network of sites, the need to balance the collection of data and samples without overburdening clinical staff and obtaining regulatory approvals across a global network of sites. CONCLUSION: Through a robust multi-network partnership, the Therapeutics for Inpatients with COVID-19 protocol has been successfully used across a global network of sites for rapid generation of efficacy data on multiple novel antiviral agents. The protocol design and implementation features used in this protocol, and the approaches to address challenges, will have broader applicability. Mechanisms to facilitate improved communication and harmonization among country-specific regulatory bodies are required to achieve the full potential of this approach in dealing with a global outbreak

    Lung epithelial stem cells and their niches : Fgf10 takes center stage

    Get PDF
    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF)

    Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis

    Get PDF
    Collagen-producing cells maintain the complex architecture of the lung and drive pathologic scarring in pulmonary fibrosis. Here we perform single-cell RNA-sequencing to identify all collagen-producing cells in normal and fibrotic lungs. We characterize multiple collagen-producing subpopulations with distinct anatomical localizations in different compartments of murine lungs. One subpopulation, characterized by expression of Cthrc1 (collagen triple helix repeat containing 1), emerges in fibrotic lungs and expresses the highest levels of collagens. Single-cell RNA-sequencing of human lungs, including those from idiopathic pulmonary fibrosis and scleroderma patients, demonstrate similar heterogeneity and CTHRC1-expressing fibroblasts present uniquely in fibrotic lungs. Immunostaining and in situ hybridization show that these cells are concentrated within fibroblastic foci. We purify collagen-producing subpopulations and find disease-relevant phenotypes of Cthrc1-expressing fibroblasts in in vitro and adoptive transfer experiments. Our atlas of collagen-producing cells provides a roadmap for studying the roles of these unique populations in homeostasis and pathologic fibrosis

    Nebulisation of synthetic lamellar lipids mitigates radiation-induced lung injury in a large animal model

    Get PDF
    Item originally deposited in University of Edinburgh, Edinburgh Research Explorer Repository at: https://www.research.ed.ac.uk/portal/en/publications/nebulisation-of-synthetic-lamellar-lipids-mitigates-radiationinduced-lung-injury-in-a-large-animal-model(ab917c99-7e7f-4fa1-8d1e-40511ca9abd3).htmlMethods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3–4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.This work was supported by Grant MRC/CIC3/025 awarded to D.C., J.L., J.M., G.M. & J.P. The authors wish to acknowledge the assistance of Dryden Animal Services in the conduct of this work, and the assistance of Dr Helen Brown in relation to experimental design and statistical analysis. The authors are grateful to Lamellar Biomedical Ltd., Strathclyde Business Park, Bellshill, Scotland, United Kingdom, for the supply of LAMELLASOME™ used in this research.8pubpubArticle no: 1331
    • …
    corecore