882 research outputs found

    Intensity interferometry for observation of dark objects

    Full text link
    We analyze an intensity interferometry measurement carried out with two point-like detectors facing a distant source (e.g., a star) that may be partially occluded by an absorptive object (e.g., a planet). Such a measurement, based on the perturbation of the observed covariance function due to the object's presence, can provide information of the object complementary to a direct optical intensity measurement. In particular, one can infer the orientation of the object's transient trajectory. We identify the key parameters that impact this perturbation and show that its magnitude is equal to the magnitude of the intensity variation caused by the same object. In astronomy applications, this value may be very small, so a differential measurement may be necessary. Finally, we discuss the signal-to-noise ratio that may be expected in this type of measurement

    Phase-conjugate optical coherence tomography

    Get PDF
    Quantum optical coherence tomography (Q-OCT) offers a factor-of-two improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the non-classical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross-correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT.Comment: 4 pages, 3 figure

    On Approaching the Ultimate Limits of Photon-Efficient and Bandwidth-Efficient Optical Communication

    Full text link
    It is well known that ideal free-space optical communication at the quantum limit can have unbounded photon information efficiency (PIE), measured in bits per photon. High PIE comes at a price of low dimensional information efficiency (DIE), measured in bits per spatio-temporal-polarization mode. If only temporal modes are used, then DIE translates directly to bandwidth efficiency. In this paper, the DIE vs. PIE tradeoffs for known modulations and receiver structures are compared to the ultimate quantum limit, and analytic approximations are found in the limit of high PIE. This analysis shows that known structures fall short of the maximum attainable DIE by a factor that increases linearly with PIE for high PIE. The capacity of the Dolinar receiver is derived for binary coherent-state modulations and computed for the case of on-off keying (OOK). The DIE vs. PIE tradeoff for this case is improved only slightly compared to OOK with photon counting. An adaptive rule is derived for an additive local oscillator that maximizes the mutual information between a receiver and a transmitter that selects from a set of coherent states. For binary phase-shift keying (BPSK), this is shown to be equivalent to the operation of the Dolinar receiver. The Dolinar receiver is extended to make adaptive measurements on a coded sequence of coherent state symbols. Information from previous measurements is used to adjust the a priori probabilities of the next symbols. The adaptive Dolinar receiver does not improve the DIE vs. PIE tradeoff compared to independent transmission and Dolinar reception of each symbol.Comment: 10 pages, 8 figures; corrected a typo in equation 3

    Signal-to-noise ratio of Gaussian-state ghost imaging

    Full text link
    The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging configurations--distinguished by the nature of their light sources--are derived. Two use classical-state light, specifically a joint signal-reference field state that has either the maximum phase-insensitive or the maximum phase-sensitive cross correlation consistent with having a proper PP representation. The third uses nonclassical light, in particular an entangled signal-reference field state with the maximum phase-sensitive cross correlation permitted by quantum mechanics. Analytic SNR expressions are developed for the near-field and far-field regimes, within which simple asymptotic approximations are presented for low-brightness and high-brightness sources. A high-brightness thermal-state (classical phase-insensitive state) source will typically achieve a higher SNR than a biphoton-state (low-brightness, low-flux limit of the entangled-state) source, when all other system parameters are equal for the two systems. With high efficiency photon-number resolving detectors, a low-brightness, high-flux entangled-state source may achieve a higher SNR than that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references and a new analysis of the nonclassical case that, for the first time, includes the complete transition to the classical signal-to-noise ratio asymptote at high source brightnes

    Computational Ghost Imaging for Remote Sensing

    Get PDF
    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In CGI, the measurement obtained from the reference arm (with the high-resolution detector) is replaced by a computational derivation of the measurement-plane intensity profile of the reference-arm beam. The algorithms applied to computational ghost imaging have diversified beyond simple correlation measurements, and now include modern reconstruction algorithms based on compressive sensing

    Quantum Communication, Sensing and Measurement in Space

    Get PDF
    The main theme of the conclusions drawn for classical communication systems operating at optical or higher frequencies is that there is a well‐understood performance gain in photon efficiency (bits/photon) and spectral efficiency (bits/s/Hz) by pursuing coherent‐state transmitters (classical ideal laser light) coupled with novel quantum receiver systems operating near the Holevo limit (e.g., joint detection receivers). However, recent research indicates that these receivers will require nonlinear and nonclassical optical processes and components at the receiver. Consequently, the implementation complexity of Holevo‐capacityapproaching receivers is not yet fully ascertained. Nonetheless, because the potential gain is significant (e.g., the projected photon efficiency and data rate of MIT Lincoln Laboratory's Lunar Lasercom Demonstration (LLCD) could be achieved with a factor‐of‐20 reduction in the modulation bandwidth requirement), focused research activities on ground‐receiver architectures that approach the Holevo limit in space‐communication links would be beneficial. The potential gains resulting from quantum‐enhanced sensing systems in space applications have not been laid out as concretely as some of the other areas addressed in our study. In particular, while the study period has produced several interesting high‐risk and high‐payoff avenues of research, more detailed seedlinglevel investigations are required to fully delineate the potential return relative to the state‐of‐the‐art. Two prominent examples are (1) improvements to pointing, acquisition and tracking systems (e.g., for optical communication systems) by way of quantum measurements, and (2) possible weak‐valued measurement techniques to attain high‐accuracy sensing systems for in situ or remote‐sensing instruments. While these concepts are technically sound and have very promising bench‐top demonstrations in a lab environment, they are not mature enough to realistically evaluate their performance in a space‐based application. Therefore, it is recommended that future work follow small focused efforts towards incorporating practical constraints imposed by a space environment. The space platform has been well recognized as a nearly ideal environment for some of the most precise tests of fundamental physics, and the ensuing potential of scientific advances enabled by quantum technologies is evident in our report. For example, an exciting concept that has emerged for gravity‐wave detection is that the intermediate frequency band spanning 0.01 to 10 Hz—which is inaccessible from the ground—could be accessed at unprecedented sensitivity with a space‐based interferometer that uses shorter arms relative to state‐of‐the‐art to keep the diffraction losses low, and employs frequency‐dependent squeezed light to surpass the standard quantum limit sensitivity. This offers the potential to open up a new window into the universe, revealing the behavior of compact astrophysical objects and pulsars. As another set of examples, research accomplishments in the atomic and optics fields in recent years have ushered in a number of novel clocks and sensors that can achieve unprecedented measurement precisions. These emerging technologies promise new possibilities in fundamental physics, examples of which are tests of relativistic gravity theory, universality of free fall, frame‐dragging precession, the gravitational inverse‐square law at micron scale, and new ways of gravitational wave detection with atomic inertial sensors. While the relevant technologies and their discovery potentials have been well demonstrated on the ground, there exists a large gap to space‐based systems. To bridge this gap and to advance fundamental‐physics exploration in space, focused investments that further mature promising technologies, such as space‐based atomic clocks and quantum sensors based on atom‐wave interferometers, are recommended. Bringing a group of experts from diverse technical backgrounds together in a productive interactive environment spurred some unanticipated innovative concepts. One promising concept is the possibility of utilizing a space‐based interferometer as a frequency reference for terrestrial precision measurements. Space‐based gravitational wave detectors depend on extraordinarily low noise in the separation between spacecraft, resulting in an ultra‐stable frequency reference that is several orders of magnitude better than the state of the art of frequency references using terrestrial technology. The next steps in developing this promising new concept are simulations and measurement of atmospheric effects that may limit performance due to non‐reciprocal phase fluctuations. In summary, this report covers a broad spectrum of possible new opportunities in space science, as well as enhancements in the performance of communication and sensing technologies, based on observing, manipulating and exploiting the quantum‐mechanical nature of our universe. In our study we identified a range of exciting new opportunities to capture the revolutionary capabilities resulting from quantum enhancements. We believe that pursuing these opportunities has the potential to positively impact the NASA mission in both the near term and in the long term. In this report we lay out the research and development paths that we believe are necessary to realize these opportunities and capitalize on the gains quantum technologies can offer
    corecore