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Computational Ghost Imaging for Remote Sensing
Ghost imaging is used in encryption, remote sensing, and biomedical imaging applications.
NASA’s Jet Propulsion Laboratory, Pasadena, California

This work relates to the generic prob-
lem of remote active imaging; that is, a
source illuminates a target of interest
and a receiver collects the scattered light
off the target to obtain an image. Con-
ventional imaging systems consist of an
imaging lens and a high-resolution de-
tector array [e.g., a CCD (charge cou-
pled device) array] to register the image.
However, conventional imaging systems
for remote sensing require high-quality
optics and need to support large detec-
tor arrays and associated electronics.
This results in suboptimal size, weight,
and power consumption.

Computational ghost imaging (CGI)
is a computational alternative to this tra-
ditional imaging concept that has a very
simple receiver structure. In CGI, the
transmitter illuminates the target with a
modulated light source. A single-pixel
(bucket) detector collects the scattered
light. Then, via computation (i.e., post-
processing), the receiver can “recon-
struct” the image using the knowledge
of the modulation that was projected
onto the target by the transmitter. This
way, one can construct a very simple re-
ceiver that, in principle, requires no lens
to image a target.

Ghost imaging is a transverse imag-
ing modality that has been receiving
much attention owing to a rich inter-

connection of novel physical character-
istics and novel signal processing algo-
rithms suitable for active computa-
tional imaging. The original ghost
imaging experiments consisted of two
correlated optical beams traversing dis-
tinct paths and impinging on two spa-
tially-separated photodetectors: one
beam interacts with the target and then
illuminates on a single-pixel (bucket)
detector that provides no spatial resolu-
tion, whereas the other beam traverses
an independent path and impinges on
a high-resolution camera without any
interaction with the target. The term
“ghost imaging” was coined soon after
the initial experiments were reported,
to emphasize the fact that by cross-cor-
relating two photocurrents, one gener-
ates an image of the target. In CGI, the
measurement obtained from the refer-
ence arm (with the high-resolution de-
tector) is replaced by a computational
derivation of the measurement-plane
intensity profile of the reference-arm
beam. The algorithms applied to com-
putational ghost imaging have diversi-
fied beyond simple correlation meas-
urements, and now include modern
reconstruction algorithms based on
compressive sensing.

The physical principles underpinning
CGI are as follows: the transmitter, by use

of a spatial light modulator, projects a
spatiotemporally varying speckle pattern
on the target. The scattered light from
the target is collected with a simple
bucket detector offering no spatial reso-
lution. The photocurrent, whose fluctua-
tions in excess of the shot-noise floor are
proportional to the sum of the fluctua-
tions seen in the transmitter-generated
speckles, is then processed to resolve the
transverse profile of the object. This sig-
nal processing can take on a rather ele-
mentary linear form such as cross-corre-
lation, or can be more complex and
nonlinear, such as Ll-norm minimiza-
tion. The latter form of ghost imaging is
known as compressive, as it utilizes tech-
niques developed for compressive imag-
ing. Turbulence near the target has neg-
ligible impact on ghost imaging. The
most restrictive source of speckle in re-
mote sensing is that induced by the dif-
fuse surface scattering from the target it-
self. Itis evident from earlier analysis that
once the speckle is fully developed, no
additional gain is possible from integra-
tion, and de-correlated speckles must be
obtained by using angular, spectral, or
polarization diversity.

This work was done by Baris I. Erkmen of Cal-
lech for NASAs Jet Propulsion Laboratory. For
more information, contact iaoffice@jpl.nasa.gov.
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© Digital Architecture for a Trace Gas Sensor Platform
John H. Glenn Research Center, Cleveland, Ohio

A digital architecture has been im-
plemented for a trace gas sensor plat-
form, as a companion to standard ana-
log  control electronics, which
accommodates optical absorption
whose fractional absorbance equivalent
would result in excess error if assumed
to be linear. In cases where the absorp-
tion (l-transmission) is not equivalent
to the fractional absorbance within a
few percent error, it is necessary to ac-
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commodate the actual measured ab-
sorption while reporting the measured
concentration of a target analyte with
reasonable accuracy. This requires in-
corporation of programmable intelli-
gence into the sensor platform so that
flexible interpretation of the acquired
data may be accomplished.

Several different digital component
architectures were tested and imple-
mented. Commercial off-the-shelf digi-

tal electronics including data acquisi-
tion cards (DAQs), complex program-
mable logic devices (CPLDs), field-pro-
grammable gate arrays (FPGAs), and
microcontrollers have been used to
achieve the desired outcome. The most
completely integrated architecture
achieved during the project used the
CPLD along with a microcontroller. The
CPLD provides the initial digital de-
modulation of the raw sensor signal,
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