1,389 research outputs found

    Cell death and life in cancer: mathematical modeling of cell fate decisions

    Full text link
    Tumor development is characterized by a compromised balance between cell life and death decision mechanisms, which are tighly regulated in normal cells. Understanding this process provides insights for developing new treatments for fighting with cancer. We present a study of a mathematical model describing cellular choice between survival and two alternative cell death modalities: apoptosis and necrosis. The model is implemented in discrete modeling formalism and allows to predict probabilities of having a particular cellular phenotype in response to engagement of cell death receptors. Using an original parameter sensitivity analysis developed for discrete dynamic systems, we determine the critical parameters affecting cellular fate decision variables that appear to be critical in the cellular fate decision and discuss how they are exploited by existing cancer therapies

    Spectral analysis of gene expression profiles using gene networks

    Full text link
    Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation. Here we propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We applied the method to the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains. It performed at least as well as the usual classification but provides much more biologically relevant results and allows a direct biological interpretation

    Shape analysis for 3D segmentation of cerebral structures with level sets and fuzzy control

    Get PDF
    http://www.afrif.asso.fr/archive/rfia2006/index.htmlNous nous proposons de segmenter des structures 3D avec des ensembles de niveau dont l'évolution est guidée par un modèle de forme et gérée par commande oue. Pour cela, plusieurs contours évoluent simultanément en direction de cibles anatomiques dénies au préalable. Un système de décision oue combine l'information a priori fournie par un modèle de forme, utilisé comme atlas, avec la distribution d'intensité de l'image et les positions relatives des contours. Il donne en sortie le terme de direction de l'équation d'évolution de l'ensemble de niveau associé à chaque contour. Cela entraîne une expansion ou une contraction locale des contours, qui convergent nalement vers leurs cibles respectives. Le modèle de forme est construit par analyse en composantes principales. La forme moyenne et les variations obtenues permettent alors de localiser une cible et de déterminer les états ous caractérisant la distance du contour courant à cette cible. Cette méthode est appliquée à la segmentation des noyaux gris du cerveau et évaluée quantitativement sur une base de 18 sujets

    Regulatory network reconstruction using an integral additive model with flexible kernel functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstruction of regulatory networks is one of the most challenging tasks of systems biology. A limited amount of experimental data and little prior knowledge make the problem difficult to solve. Although models that are currently used for inferring regulatory networks are sometimes able to make useful predictions about the structures and mechanisms of molecular interactions, there is still a strong demand to develop increasingly universal and accurate approaches for network reconstruction.</p> <p>Results</p> <p>The additive regulation model is represented by a set of differential equations and is frequently used for network inference from time series data. Here we generalize this model by converting differential equations into integral equations with adjustable kernel functions. These kernel functions can be selected based on prior knowledge or defined through iterative improvement in data analysis. This makes the integral model very flexible and thus capable of covering a broad range of biological systems more adequately and specifically than previous models.</p> <p>Conclusion</p> <p>We reconstructed network structures from artificial and real experimental data using differential and integral inference models. The artificial data were simulated using mathematical models implemented in JDesigner. The real data were publicly available yeast cell cycle microarray time series. The integral model outperformed the differential one for all cases. In the integral model, we tested the zero-degree polynomial and single exponential kernels. Further improvements could be expected if the kernel were selected more specifically depending on the system.</p

    Robust Microarray Image Processing

    Get PDF

    NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    Get PDF
    Molecular biology knowledge can be systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist a number of maps of molecular interactions containing detailed description of various cell mechanisms. It is difficult to explore these large maps, to comment their content and to maintain them. Though there exist several tools addressing these problems individually, the scientific community still lacks an environment that combines these three capabilities together. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. NaviCell combines three features: (1) efficient map browsing based on Google Maps engine; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting the community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of their interest in the context of signaling pathways and cross-talks between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive fashion due to an imbedded blogging system. NaviCell provides an easy way to explore large-scale maps of molecular interactions, thanks to the Google Maps and WordPress interfaces, already familiar to many users. Semantic zooming used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization meaningful to the user. In addition, NaviCell provides a framework for community-based map curation.Comment: 20 pages, 5 figures, submitte
    • …
    corecore