52 research outputs found

    Arginine transport and nitric oxide production: role in the inflammatory response

    Get PDF
    The research concerns the characterization of the pathways responsible for the recruitment of L-arginine, the obliged substrate for nitric oxide biosynthesis, in human cells. Endothelial cells and monocytes/macrophages have been employed, as the cell types more directly linked to NO pathway. As for human endothelium, only system y+ is involved in the inflammatory response: both TNFα and rapamycin, an mTOR inhibitor employed in clinical angioplasty, lead to a massive increase of CAT-mediated arginine influx and to the activation of endothelial cells; however, both compounds are ineffective in stimulating the synthesis of NO, and even diminish the expression of eNOS mRNA and protein. Rapamycin also causes a significant loss of cell viability and function, thus confirming the adverse effects of the drug observed in vivo. Among cells of the human monocyte/macrophage lineage, differences in the modulation of arginine transport by cytokines have emerged: IFNγ stimulates system y+L activity in blood monocytes, while alveolar macrophages are insensitive to inflammatory stimuli; also in these models, the production of NO is undetectable even in the presence of inflammatory cytokines. The supposed co-induction of arginine transport and NO biosynthesis under inflammatory conditions may thus not be valid for human cells, although plausible in animal models

    Desmopressin Stimulates Nitric Oxide Production in Human Lung Microvascular Endothelial Cells

    Get PDF
    Desmopressin (dDAVP) is the best characterized analogue of vasopressin, the endocrine regulator of water balance endowed with potent vasoconstrictive effects. Despite the use of dDAVP in clinical practice, ranging from the treatment of nephrogenic diabetes insipidus to bleeding disorders, much remains to be understood about the impact of the drug on endothelial phenotype. The aim of this study was, thus, to evaluate the effects of desmopressin on the viability and function of human pulmonary microvascular endothelial cells (HLMVECs). The results obtained demonstrate that the vasopressor had no cytotoxic effect on the endothelium; similarly, no sign of endothelial activation was induced by dDAVP, indicated by the lack of effect on the expression of inflammatory cytokines and adhesion molecules. Conversely, the drug significantly stimulated the production of nitric oxide (NO) and the expression of the inducible isoform of nitric oxide synthase, NOS2/iNOS. Since the intracellular level of cAMP also increased, we can hypothesize that NO release is consequent to the activation of the vasopressin receptor 2 (V2R)/guanylate cyclase (Gs)/cAMP axis. Given the multifaceted role of NOS2-deriving NO for many physio-pathological conditions, the meanings of these findings in HLMVECs appears intriguing and deserves to be further address

    Organic cation transporters (OCTs/OCTNs) in human primary alveolar epithelial cells.

    Get PDF
    Abstract Alveolar epithelium, besides exerting a key role in gas exchange and surfactant production, plays important functions in host defense and inflammation. Pathological conditions associated to alveolar dysfunction include Acute Respiratory Distress Syndrome (ARDS), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The use of predictive in vitro models of human alveolar epithelium is nowadays required for the study of disease mechanisms, as well as of pharmacokinetic parameters of pulmonary drugs delivery. Here, we employed a novel 3D model of human alveoli, namely EpiAlveolarâ„¢, consisting of primary alveolar epithelial cells, pulmonary endothelial cells and fibroblasts, that reflects properly the in vivo-like conditions. In EpiAlveolarâ„¢ we performed a characterization of Organic Cation Transporters (OCTs and OCTNs) expression and activity and we found that OCTN2, OCT1 and OCT3 are expressed on the basolateral membrane; instead, ATB0,+ transporter for cationic and neutral amino acids, which shares with OCTN2 the affinity for carnitine as substrate, is readily detectable and functional at the apical side. We also show that these transporters differentially interact with anticholinergic drugs. Overall, our findings reveal close similarities of EpiAlveolarâ„¢ with the tracheal/bronchial epithelium (EpiAirwayâ„¢ model) and entrust this alveolar tissue as a potential tool for the screening of biopharmaceuticals molecules

    The Diverse Potential of Gluten from Different Durum Wheat Varieties in Triggering Celiac Disease: A Multilevel In Vitro, Ex Vivo and In Vivo Approach

    Get PDF
    The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response

    In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of <it>SLC7A7</it>/y+LAT1 impair system y<sup>+</sup>L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed.</p> <p>Methods</p> <p>Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL) performed on the same patient. System y<sup>+</sup>L activity was determined measuring the 1-min uptake of [<sup>3</sup>H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR.</p> <p>Results</p> <p>We have found that: 1) system y<sup>+</sup>L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of <it>SLC7A7</it>/y+LAT1 in these cells; 2) on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the <it>SLC7A6</it>/y+LAT2 isoform; 3) in both normal and LPI monocytes, GM-CSF induces the expression of <it>SLC7A7</it>, suggesting that the gene is a target of the cytokine; 4) GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5) general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization.</p> <p>Conclusions</p> <p>Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the defect in system y<sup>+</sup>L-mediated arginine transport. The different transport phenotypes are referable to the relative levels of expression of <it>SLC7A7 </it>and <it>SLC7A6</it>. Moreover, the expression of <it>SLC7A7 </it>is regulated by GM-CSF in monocytes, pointing to a role of y+LAT1 in the pathogenesis of LPI associated PAP.</p

    IJMS2024_RecchiLuciani

    No full text

    Biomedicines_Barilli2023

    No full text

    Gliadin activates arginase pathway in RAW264.7 cells and in human monocytes

    Get PDF
    Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. Recent studies have demonstrated that macrophages play a key role in the pathogenesis of CD through the release of inflammatory mediators such as cytokines and nitric oxide (NO). Since arginine is the obliged substrate of iNOS (inducible nitric oxide synthase), the enzyme that produces large amount of NO, the aim of this work is to investigate arginine metabolic pathways in RAW264.7 murine macrophages after treatment with PT-gliadin (PTG) in the absence and in the presence of IFNγ. Our results demonstrate that, besides strengthening the IFNγ-dependent activation of iNOS, gliadin is also an inducer of arginase, the enzyme that transforms arginine into ornithine and urea. Gliadin treatment increases, indeed, the expression and the activity of arginase, leading to the production of polyamines through the subsequent induction of ornithine decarboxylase. This effect is strengthened by IFNγ. The activation of these pathways takes advantage of the increased availability of arginine due to a decreased system y+l-mediated efflux, likely ascribable to a reduced expression of Slc7a6 transporter. A significant induction of arginase expression is also observed in human monocytes from healthy subject upon treatment with gliadin, thus demonstrating that gluten components trigger changes in arginine metabolism in monocyte/macrophage cell

    y+LAT1 and y+LAT2 contribution to arginine uptake in different human cell models: Implications in the pathophysiology of Lysinuric Protein Intolerance

    No full text
    y+LAT1 (encoded by SLC7A7), together with y+LAT2 (encoded by SLC7A6), is the alternative light subunits composing the heterodimeric transport system y+L for cationic and neutral amino acids. SLC7A7 mutations cause lysinuric protein intolerance (LPI), an inherited multisystem disease characterized by low plasma levels of arginine and lysine, protein-rich food intolerance, failure to thrive, hepatosplenomegaly, osteoporosis, lung involvement, kidney failure, haematologic and immunological disorders. The reason for the heterogeneity of LPI symptoms is thus far only poorly understood. Here, we aimed to quantitatively compare the expression of SLC7A7 and SLC7A6 among different human cell types and evaluate y+LAT1 and y+LAT2 contribution to arginine transport. We demonstrate that system y+L-mediated arginine transport is mainly accounted for by y+LAT1 in monocyte-derived macrophages (MDM) and y+LAT2 in fibroblasts. The kinetic analysis of arginine transport indicates that y+LAT1 and y+LAT2 share a comparable affinity for the substrate. Differences have been highlighted in the expression of SLC7A6 and SLC7A7 mRNA among different cell models: while SLC7A6 is almost equally expressed, SLC7A7 is particularly abundant in MDM, intestinal Caco-2 cells and human renal proximal tubular epithelial cells (HRPTEpC). The characterization of arginine uptake demonstrates that system y+L is operative in renal cells and in Caco-2 where, at the basolateral side, it mediates arginine efflux in exchange with leucine plus sodium. These findings explain the defective absorption/reabsorption of arginine in LPI. Moreover, y+LAT1 is the prevailing transporter in MDM sustaining a pivotal role in the pathogenesis of immunological complications associated with the disease
    • …
    corecore