23 research outputs found

    A new player in the development of TRAIL based therapies for hepatocarcinoma treatment: ATM kinase

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed

    Tug of war between survival and death: exploring ATM function in cancer.

    Get PDF
    Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer

    Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis

    Get PDF
    Caspase-8 is a proapoptotic protease that suppresses neuroblastoma metastasis by inducing programmed cell death. Paradoxically, caspase-8 can also promote cell migration among nonapoptotic cells; here, we show that caspase-8 can promote metastasis when apoptosis is compromised. Migration is enhanced by caspase-8 recruitment to the cellular migration machinery following integrin ligation. Caspase-8 catalytic activity is not required for caspase-8-enhanced cell migration; rather, caspase-8 interacts with a multiprotein complex that can include focal adhesion kinase and calpain 2 (CPN2), enhancing cleavage of focal adhesion substrates and cell migration. Caspase-8 association with CPN2/calpastatin disrupts calpastatin-mediated inhibition of CPN2. In vivo, knockdown of either caspase-8 or CPN2 disrupts metastasis among apoptosis-resistant tumors. This unexpected molecular collaboration provides an explanation for the continued or elevated expression of caspase-8 observed in many tumors

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Deregulation of proteasome function induces Abl-mediated cell death by uncoupling p130CAS and c-CrkII

    Get PDF
    Cell migration and survival are coordinately regulated through activation of c-Abl (Abl) family tyrosine kinases. Activated Abl phosphorylates tyrosine 221 of c-CrkII (Crk; Crk-Y221-P), which prevents Crk from binding to the docking protein p130(CAS) (CAS). Disruption of CAS-Crk binding blocks downstream effectors of the actin cytoskeleton and focal adhesion assembly, inhibits cell migration, and disrupts survival signals leading to apoptosis. Here we show that inhibition of the 26 S proteasome and ubiquitination facilitates Abl-mediated Crk-Y221-P, leading to disassembly of CAS-Crk complexes in cells. Surprisingly, inhibition of these molecular interactions does not perturb cell migration but rather specifically induces apoptosis. Furthermore, we demonstrate that attachment to an extracellular matrix plays a key role in regulating the apoptotic machinery through caspase-mediated cleavage of Abl and Crk-Y221-P. Our findings indicate that regulated protein degradation by the proteasome specifically controls cell death through regulation of Abl-mediated Crk Tyr221 phosphorylation and assembly of the CAS-Crk signaling scaffold

    Subtractive hybridization cloning of novel genes differentially expressed during intestinal development

    No full text
    Intestinal genes whose expression is regulated during development and differentiation were identified and cloned from a rat villi cDNA library using a subtracted cDNA probe. The isolated clones are transcribed in the fully differentiated intestinal epithelium 21 days after birth and absent or poorly expressed in the fetal gut at 15 days of gestation. Two of the DRI (differentially-expressed in rat intestine) genes are novel, while the others encode the microvillar protein ezrin and intracellular carrier proteins for retinol and fatty acids. Expression of the newly isolated DRI27 and DRI42 clones parallels epithelial differentiation during development and it is more pronounced in the distal portions of the small intestine. In situ hybridization experiments indicate that the DRI mRNAs are expressed in the differentiated cell types of the gut epithelium. Moreover, the expression of DRI27 and DRI42 is strongly related to the stage of epithelial differentiation during gut development. This relationship holds true also for the expression of DRI42 in other tissues. These clones will be a valuable tool to identify regulatory sequences and factors responsible for confining gene expression to the differentiated epithelial cell types in mammalian small intestine

    The Dri 42 gene, whose expression is up-regulated during epithelial differentiation, encodes a novel endoplasmic reticulum resident transmembrane protein

    Get PDF
    A search for novel genes that are up-regulated during development and differentiation of the epithelial cells of the intestinal mucosa led us to the isolation of the Dri 42 cDNA clone (Dri, differentially expressed in rat intestine). The nucleotide sequence of the full-length cDNA has shown that it encodes a 35.5-kDa protein with one consensus sequence for N-linked glycosylation and alternating hydrophilic and hydrophobic domains. To determine the intracellular localization of Dri 42 we have raised polyclonal antibodies in hens against a bacterially produced Dri 42-glutathione S-transferase fusion protein. Immunofluorescence detection with these antibodies has shown specific staining of the endoplasmic reticulum (ER) in the relatively undifferentiated fetal rat intestinal cell line FRIC B and in sections of rat small intestine. ER membrane localization of Dri 42 was confirmed by laser confocal microscopy of polarized Madin-Darby canine kidney cells overexpressing a Dri 42-chloramphenicol acetyltransferase (CAT) fusion protein by transfection. Pulse labeling experiments on transiently transfected cells demonstrated that the protein does not acquire Golgi modifications up to 4 h after synthesis, thus indicating that Dri 42 is an ER resident protein. The transmembrane disposition of Dri 42 was studied using in vitro insertion of Dri 42-CAT fusion proteins into microsomal membranes. The fusion proteins consisted of several different lengths of truncated Dri 42 and a reporter protein, CAT, that was linked in-frame after each hydrophobic segment. We found that hydrophobic segments H1, H3, and H5 had a signal/anchor function, and that membrane insertion of Dri 42 was achieved co-translationally by the action of a series of alternating insertion signals and halt transfer signals, resulting in the exposure of both termini of the protein to the cytosolic side. The functional implications of the structure and localization of Dri 42, whose primary sequence does not share significant homology to any previously described protein, are discussed

    Oxygen sensing is impaired in ATM-defective cells

    No full text
    The transcription factor hypoxia-inducible factor 1α (HIF-1α) is a master regulator of cell adaptation to decreasing oxygen levels. High oxygen tension promotes proteosomal degradation of HIF-1α via a pathway that requires hydroxylation of prolines 402 and 564. Low oxygen tension, hypoxia, inactivates the hydroxylases responsible for these modifications through a mechanism that is not fully understood but appears to require mitochondrial respiration and production of reactive oxygen species, ROS. Cells from individuals affected by ataxia telangiectasia syndrome have an impaired mitochondrial activity and a constitutive oxidative stress. Here we show that, in these cells, HIF-1α is efficiently degraded even in condition of low oxygen tension. Mechanistically this depends from a blunted increase in intracellular concentration of ROS in response to hypoxia which in turn is due to an increased cellular capacity of buffering ROS. We suggest that regulation of HIF-1α stability may depend on fold change of ROS relative to the basal level more than on their absolute value. Since elevated oxidative stress is a hallmark of many human disorders our finding may be relevant to different pathologies

    ATM kinase activity modulates ITCH E3-ubiquitin ligase activity

    No full text
    Ataxia Telangiectasia Mutated (ATM) kinase, a central regulator of the DNA damage response, regulates the activity of several E3-ubiquitin ligases, and the ubiquitination-proteasome system is a consistent target of ATM. ITCH is an E3-ubiquitin ligase that modulates the ubiquitination of several targets, therefore participating to the regulation of several cellular responses, such as the DNA damage response, tumor necrosis factorα (TNFα), Notch and Hedgehog signaling, and the differentiation of 'naive' lymphocytes into T helper type 2 cells. Here we uncover ATM as a novel positive modulator of ITCH E3-ubiquitin ligase activity. A single residue on ITCH protein, S161, which is part of an ATM SQ consensus motif, is required for ATM-dependent activation of ITCH. ATM activity enhances ITCH enzymatic activity, which in turn drives the ubiquitination and degradation of c-FLIP-L and c-Jun, previously identified as ITCH substrates. Importantly, ATM-deficient mice show resistance to hepatocyte cell death, similarly to Itch-deficient animals, providing in vivo genetic evidence for this circuit. Our data identify ITCH as a novel component of the ATM-dependent signaling pathway and suggest that the impairment of the correct functionality of ITCH caused by Atm deficiency may contribute to the complex clinical features linked to Ataxia Telangiectasia.Oncogene advance online publication, 25 February 2013; doi:10.1038/onc.2013.52
    corecore