21 research outputs found

    BEAST 2.5:An advanced software platform for Bayesian evolutionary analysis

    Get PDF
    Elaboration of Bayesian phylogenetic inference methods has continued at pace in recent years with major new advances in nearly all aspects of the joint modelling of evolutionary data. It is increasingly appreciated that some evolutionary questions can only be adequately answered by combining evidence from multiple independent sources of data, including genome sequences, sampling dates, phenotypic data, radiocarbon dates, fossil occurrences, and biogeographic range information among others. Including all relevant data into a single joint model is very challenging both conceptually and computationally. Advanced computational software packages that allow robust development of compatible (sub-)models which can be composed into a full model hierarchy have played a key role in these developments. Developing such software frameworks is increasingly a major scientific activity in its own right, and comes with specific challenges, from practical software design, development and engineering challenges to statistical and conceptual modelling challenges. BEAST 2 is one such computational software platform, and was first announced over 4 years ago. Here we describe a series of major new developments in the BEAST 2 core platform and model hierarchy that have occurred since the first release of the software, culminating in the recent 2.5 release

    Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process

    Get PDF
    Fossil information is essential for estimating species divergence times, and can be integrated into Bayesian phylogenetic inference using the fossilized birth–death (FBD) process. An important aspect of palaeontological data is the uncertainty surrounding specimen ages, which can be handled in different ways during inference. The most common approach is to fix fossil ages to a point estimate within the known age interval. Alternatively, age uncertainty can be incorporated by using priors, and fossil ages are then directly sampled as part of the inference. This study presents a comparison of alternative approaches for handling fossil age uncertainty in analysis using the FBD process. Based on simulations, we find that fixing fossil ages to the midpoint or a random point drawn from within the stratigraphic age range leads to biases in divergence time estimates, while sampling fossil ages leads to estimates that are similar to inferences that employ the correct ages of fossils. Second, we show a comparison using an empirical dataset of extant and fossil cetaceans, which confirms that different methods of handling fossil age uncertainty lead to large differences in estimated node ages. Stratigraphic age uncertainty should thus not be ignored in divergence time estimation and instead should be incorporated explicitly

    Seven rules for simulations in paleobiology

    No full text
    Simulations are playing an increasingly important role in paleobiology. When designing a simulation study, many decisions have to be made and common challenges will be encountered along the way. Here, we outline seven rules for executing a good simulation study. We cover topics including the choice of study question, the empirical data used as a basis for the study, statistical and methodological concerns, how to validate the study, and how to ensure it can be reproduced and extended by others. We hope that these rules and the accompanying examples will guide paleobiologists when using simulation tools to address fundamental questions about the evolution of life

    Ignoring Fossil Age Uncertainty Leads to Inaccurate Topology and Divergence Time Estimates in Time Calibrated Tree Inference

    No full text
    Time calibrated trees are challenging to estimate for many extinct groups of species due to the incompleteness of the rock and fossil records. Additionally, the precise age of a sample is typically not known as it may have occurred at any time during the time interval spanned by the rock layer. Bayesian phylogenetic approaches provide a coherent framework for incorporating multiple sources of evidence and uncertainty. In this study, we simulate datasets with characteristics typical of Palaeozoic marine invertebrates, in terms of character and taxon sampling. We use these datasets to examine the impact of different age handling methods on estimated topologies and divergence times obtained using the fossilized birth-death process. Our results reiterate the importance of modeling fossil age uncertainty, although we find that the relative impact of fossil age uncertainty depends on both fossil taxon sampling and character sampling. Sampling the fossil ages as part of the inference gives topology and divergence time estimates that are as good as those obtained by fixing ages to the truth, whereas fixing fossil ages to incorrect values results in higher error and lower coverage. The relative effect increases with increased fossil and character sampling. Modeling fossil age uncertainty is thus critical, as fixing incorrect fossil ages will negate the benefits of improved fossil and character sampling.ISSN:2296-701

    Taming the BEAST-A community teaching material resource for BEAST 2.

    No full text
    Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead, biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding of themodels and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit researchers who do not have access to similar courses or training at their home institutions. Here,we introduce the “Taming the Beast” (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2

    Taming the BEAST-A community teaching material resource for BEAST 2.

    No full text
    Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead, biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding of themodels and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit researchers who do not have access to similar courses or training at their home institutions. Here,we introduce the “Taming the Beast” (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2
    corecore