6,452 research outputs found

    A conceptual model of daily water balance following partial clearing from forest to pasture

    Get PDF
    A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i) Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii) a transient Stream zone Store (iii) a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas responsible for surface runoff, interflow and deep percolation. The Subsurface Store describes the unsaturated soil moisture balance, extraction of percolated water by vegetation and groundwater recharge. The Groundwater Store controls the baseflow to stream (if any) and the groundwater contribution to the stream zone saturated areas. The daily model was developed following a <I>downward approach</I> by analysing data from Ernies (control) and Lemon (53% cleared) catchments in Western Australia and elaborating a monthly model. The daily model performed very well in simulating daily flow generation processes for both catchments. Most of the model parameters were incorporated a priori from catchment attributes such as surface slope, soil depth, porosity, stream length and initial groundwater depth, and some were calibrated by matching the observed and predicted hydrographs. The predicted groundwater depth, and streamflow volumes across all time steps from daily to monthly to annual were in close agreement with observations for both catchments

    A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture

    Get PDF
    We developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i) Dry, Wet and Subsurface Stores, (ii) a saturated Groundwater Store and (iii) a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a 'free mixing' between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period with NSE of 0.7 and 0.4 for Ernies and Lemon catchment respectively. The model slightly over predicted annual stream salt load by 6.2% and 6.8%

    Test-bed development & measurement plan for evaluating transmit diversity in DVB networks

    Get PDF
    This paper presents a test-bed development and measurement plan for evaluating transmit diversity in the DVB network. Transmit diversity reduces the complexity and improves the power consumption of the personal receiving devices by improving the transmission of signals in NLOS cluttered environments. Also, it is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. Test service scenarios were developed to illustrate the benefits of such technologies so that effectiveness can be researched in a variety of service and terrain scenarios using purpose built test systems. The laboratory tests were designed to validate the theoretical measurements from the theoretical analysis and these results will be verified by a field measurement campaign in short and long time spans

    Rooftop and indoor reception with transmit diversity applied to DVB-T networks: A long term measurement campaign

    Get PDF
    Although transmit Delay Diversity (DD) can provide a gain in indoor and other Non Line of Sight situations (NLOS), it can introduce degradation in rooftop reception. In fact, when the Ricean K factor of the channel is significantly high (e.g. Line of Sight reception), the channel performs similar to an AWGN channel where the performance degrades due to DD that artificially increase the fading. This paper investigates through practical evaluation the impacts of Transmit DD on LOS and NLOS stationary reception. Then, it studies 2 techniques to reduce the degradation performance in LOS while aiming to keep the same diversity gain in NLOS receptio

    A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture

    Get PDF
    International audienceWe developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i) Dry, Wet and Subsurface Stores, (ii) a saturated Groundwater Store and (iii) a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a "free mixing" between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period with NSE of 0.7 and 0.4 for Ernies and Lemon catchment respectively. The model slightly over predicted annual stream salt load by 6.2% and 6.8%

    Parameter sensitivity to climate and landscape variability of a simple, lumped salt and water balance model

    No full text
    International audienceA salt and water balance model is developed to represent salinity generation following land use changes in Western Australia. The model consists of five interconnecting stores: (i) Dry, Wet and Subsurface unsaturated Stores, (ii) a transient Stream zone Store and (iii) a saturated Groundwater Store. The salinity generation process in Western Australia is highly dependent on annual rainfall, potential energy for evaporation, salt fall and land use history of a catchment. We selected six experimental catchments with different land use histories across a climatic gradient to test the model and assess parameter sensitivity. The model was successful in representing the streamflow and salinity generation processes of all catchments. In the process of application, we classified the model parameters into three sets: (i) "known", (ii) "fixed" and (iii) "variable". The "known" parameter set is calculated a priori from catchment attributes. The "fixed" set comprises regionalised parameters that remain unchanged across all catchments once calibrated in one catchment. The "variable" set of seven physically meaningful parameters were calibrated at one catchment, estimated a priori for other catchments and then subsequently adjusted for best fit. The "variable" set represents: (i) the depth (d), spatial distribution (b, c), relationship of the lateral hydraulic conductivity with moisture content (ia) and vertical conductivity (Kuv) of the top soil, (ii) lateral conductivity (Kll) of the groundwater system, and (iii) salt release (Cu) from top soil. Sensitivity analyses of key model parameters show that the relationship of the top soil lateral hydraulic conductivity with soil moisture content (ia) is the most sensitive parameter. Other sensitive parameters include the depth of the top soil and its spatial distribution (d, b, c)

    Behaviour in Magnetic Fields of Fast Conventional and Fine-Mesh Photomultipliers

    Full text link
    The performance of both conventional and fine-mesh Hamamatsu photomultipliers has been measured inside moderate magnetic fields. This has allowed the test of effective shielding solutions for photomultipliers, to be used in time-of-flight detectors based on scintillation counters. Both signal amplitude reduction or deterioration of the timing properties inside magnetic fields have been investigated

    Laboratory measurement campaign of DVB-T signal with transmit delay diversity

    Get PDF
    The requirements for future DVB-T/H networks demand that broadcasters design and deploy networks that provide ubiquitous reception in challenging indoors and other obstructed situations. It is essential that such networks are designed cost-effectively and with minimized environmental impact. The EC funded project PLUTO has since its start in 2006 explored the use of diversity to improve coverage in these difficult situations. The purpose of this paper is to investigate the performance of Transmit Delay Diversity (DD) with two antennas to improve the reception of DVB-T/H systems operating in different realistic propagation conditions through a series of tests using a SPIRENT SR5500 dual channel emulator. The relationship between correlation coefficient between channels, receiver velocity and diversity gain is nvestigated. It is shown that transmit delay diversity significantly improves the quality of reception particularly in simulated fast fading mobile broadcasting applications. This paper documents research conducted by Brunel University and Broadreach Systems
    corecore