88 research outputs found

    Prevalence of neurogenetic disorders in the North of England.

    Get PDF
    OBJECTIVE: Genetic disorders enter the differential diagnosis of common neurologic diseases, but their overall prevalence is not known. We set out to determine their minimum prevalence. METHODS: Meta-analysis of epidemiologic data gathered from the same geographic region in the North of England. RESULTS: Monogenic neurologic disorders affect at least 90.9/100,000 (95% confidence interval 87.6-94.3), or 1 in 1,100 of the population in Northern England. CONCLUSION: As a group, neurogenetic disorders are not rare. These findings have implications for clinical service delivery

    Emerging therapies for mitochondrial disorders.

    Get PDF
    Mitochondrial disorders are a diverse group of debilitating conditions resulting from nuclear and mitochondrial DNA mutations that affect multiple organs, often including the central and peripheral nervous system. Despite major advances in our understanding of the molecular mechanisms, effective treatments have not been forthcoming. For over five decades patients have been treated with different vitamins, co-factors and nutritional supplements, but with no proven benefit. There is therefore a clear need for a new approach. Several new strategies have been proposed acting at the molecular or cellular level. Whilst many show promise in vitro, the clinical potential of some is questionable. Here we critically appraise the most promising preclinical developments, placing the greatest emphasis on diseases caused by mitochondrial DNA mutations. With new animal and cellular models, longitudinal deep phenotyping in large patient cohorts, and growing interest from the pharmaceutical industry, the field is poised to make a breakthrough.G.P. is the recipient of a Bisby Fellowship from the Canadian Institutes of Health Research D.B. is the recipient of a Kennedy Scholarship. PFC is a Wellcome Trust Senior Fellow in Clinical Science (101876/Z/13/Z), and a UK NIHR Senior Investigator. PFC receive s additional support from the Wellcome Trust Centre for Mitochondrial Research (096919Z/11/Z), the Medical Research Council (UK) Centre for Translational Muscle Disease research (G0601943), and EU FP7 TIRCON.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/brain/aww08

    Mitochondrial pathology in progressive cerebellar ataxia.

    Get PDF
    BACKGROUND: Mitochondrial disease can manifest as multi-organ disorder, often with neurological dysfunction. Cerebellar ataxia in isolation or in combination with other features can result from mitochondrial disease yet genetic testing using blood DNA is not sufficient to exclude this as a cause of ataxia. Muscle biopsy is a useful diagnostic tool for patients with ataxia suspected of mitochondrial disease. Our aim was to determine specific patient selection criteria for muscle biopsy to see how frequent mitochondrial mutations are responsible for progressive ataxia. We performed a two centre retrospective review of patients with unexplained progressive ataxia who underwent muscle biopsy for suspected mitochondrial disease between 2004 and 2014 (Sheffield and Newcastle Ataxia Centres). RESULTS: A total of 126 patients were identified; 26 assessed in Newcastle and 100 in Sheffield. Twenty-four patients had pure ataxia and 102 had ataxia with additional features. The total number of patients with histologically suspected and/or genetically confirmed mitochondrial disease was 29/126 (23 %). CONCLUSIONS: A large proportion of patients (23 %) with progressive ataxia who underwent muscle biopsy were found to have features of mitochondrial dysfunction, with molecular confirmation in some. Muscle biopsy is a helpful diagnostic tool for mitochondrial disease in patients with progressive ataxia

    Cytotoxic T-cells mediate exercise-induced reductions in tumor growth

    Get PDF
    Funder: VetenskapsrÄdet; FundRef: http://dx.doi.org/10.13039/501100004359Funder: Cancerfonden; FundRef: http://dx.doi.org/10.13039/501100002794Funder: Barncancerfonden; FundRef: http://dx.doi.org/10.13039/501100006313Funder: Svenska LÀkaresÀllskapet; FundRef: http://dx.doi.org/10.13039/501100007687Funder: Cancer Research UK; FundRef: http://dx.doi.org/10.13039/501100000289Funder: Medical Research Council; FundRef: http://dx.doi.org/10.13039/501100000265Exercise has a wide range of systemic effects. In animal models, repeated exertion reduces malignant tumor progression, and clinically, exercise can improve outcome for cancer patients. The etiology of the effects of exercise on tumor progression are unclear, as are the cellular actors involved. We show here that in mice, exercise-induced reduction in tumor growth is dependent on CD8+ T cells, and that metabolites produced in skeletal muscle and excreted into plasma at high levels during exertion in both mice and humans enhance the effector profile of CD8+ T-cells. We found that activated murine CD8+ T cells alter their central carbon metabolism in response to exertion in vivo, and that immune cells from trained mice are more potent antitumor effector cells when transferred into tumor-bearing untrained animals. These data demonstrate that CD8+ T cells are metabolically altered by exercise in a manner that acts to improve their antitumoral efficacy

    Insights into the degradation capacities of Amycolatopsis tucumanensis DSM 45259 guided by microarray data

    Get PDF
    The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.Fil: Bourguignon, Natalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tucuman. Planta Piloto de Procesos Industriales Microbiologicos; ArgentinaFil: Bargiela, Rafael. Consejo Superior de Investigaciones CientĂ­ficas; EspañaFil: Rojo, David. Centro de MetabolĂłmica y BioanĂĄlisis; EspañaFil: Chernikova, Tatyana N.. Bangor University; Reino UnidoFil: de Rodas, Sara A. LĂłpez. Universidad Complutense de Madrid; EspañaFil: GarcĂ­a-Cantalejo, JesĂșs. Universidad Complutense de Madrid; EspañaFil: NĂ€ther, Daniela J.. Goethe Universitat Frankfurt; AlemaniaFil: Golyshin, Peter N.. Bangor University; Reino UnidoFil: Barbas, Coral. Centro de MetabolĂłmica y BioanĂĄlisis; EspañaFil: Ferrero, Marcela Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tucuman. Planta Piloto de Procesos Industriales Microbiologicos; ArgentinaFil: Ferrer, Manuel. Consejo Superior de Investigaciones CientĂ­ficas; Españ

    Surface Analysis Insight Note: Observations relating to photoemission peak shapes, oxidation state, and chemistry of titanium oxide films

    Get PDF
    It is common practice to describe the coordination of metal atoms in a binding configuration with their nearest neighbors in terms of oxidation state, a measure by which the number of electrons redistributed between atoms forming chemical bonds. In XPS terms, change to an oxidation state is commonly inferred by correlating photoemission signal with binding energy. The assumption, when classifying photoemission signals into distinct spectral shapes, is that a distribution of intensities shifted to lower binding energy is evidence of a reduction in oxidation state. In this Insight note, we raise the prospect that changes in photoemission peak shape may occur without obvious changes, determined by XPS in stoichiometry for a material. It is well known that TiO2 measured by XPS yields reproducible Ti 2p photoemission peaks. However, on exposing TiO2 to ion beams, Ti 2p photoemission evolves to complex distributions in intensity, which are particularly difficult to analyze by traditional fitting of bell‐shaped curves to these data. For these reasons, in this Insight note, a thin film of TiO2 deposited on a silicon substrate is chosen for analysis by XPS and linear algebraic techniques. Alterations in spectral shapes created from modified TiO2, which might be interpreted as the change in oxidation state, are assessed in terms of relative proportions of titanium to oxygen. It is found through detailed analysis of spectra that quantification by XPS, using procedures routinely used in practice, is not in accord with the typical interpretations of photoemission shapes. The data processing methods used and results presented in this work are of particular relevance to elucidating fundamental phenomena governing the surface evolution of materials‐enabled energy processes where cyclic/non‐steady usage changes the nature of bonding, especially in the presence of contaminants

    The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Get PDF
    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia

    lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers

    Full text link
    We assume data sampled from a mixture of d-dimensional linear subspaces with spherically symmetric distributions within each subspace and an additional outlier component with spherically symmetric distribution within the ambient space (for simplicity we may assume that all distributions are uniform on their corresponding unit spheres). We also assume mixture weights for the different components. We say that one of the underlying subspaces of the model is most significant if its mixture weight is higher than the sum of the mixture weights of all other subspaces. We study the recovery of the most significant subspace by minimizing the lp-averaged distances of data points from d-dimensional subspaces, where p>0. Unlike other lp minimization problems, this minimization is non-convex for all p>0 and thus requires different methods for its analysis. We show that if 0<p<=1, then for any fraction of outliers the most significant subspace can be recovered by lp minimization with overwhelming probability (which depends on the generating distribution and its parameters). We show that when adding small noise around the underlying subspaces the most significant subspace can be nearly recovered by lp minimization for any 0<p<=1 with an error proportional to the noise level. On the other hand, if p>1 and there is more than one underlying subspace, then with overwhelming probability the most significant subspace cannot be recovered or nearly recovered. This last result does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1 and for estimates relying on it), asymptotic dependence of probabilities and constants on D and d and further clarifications; for simplicity it assumes uniform distributions on spheres. V4: minor revision for the published versio

    Utilization of low-molecular-weight organic compounds by the filterable fraction of a lotic microbiome

    Get PDF
    [EN] Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 ”m-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.This work was carried out under the DOMAINE project, which is funded by the UK Natural Environment Research Council (NERC) (large grant NE/K010689/1). D.L.J., O.V.G. and P.N.G. acknowledge the support of the Centre for Environmental Biotechnology Project funded by the European Regional Development Fund (ERDF) through the Welsh Government. D.L.J. and P.N.G. thank Natural Environment Research Council (NERC) for funding the project ‘Plastic Vectors’ (NE/S004548/1). 16S rRNA sequencing and thework of A.A.K.was supported by a grant from Ministry of Science and Higher Education of Russian Federation allocated to the Kurchatov Center for Genome Research (grant 075–15-2019–1659). The work of S.V.T. was supported by Ministry of Science and Higher Education within the State assignment of FRC ‘Fundamentals of Biotechnology’ RAS
    • 

    corecore