[EN] Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.This work was carried out under the DOMAINE project, which is funded by the UK Natural Environment Research Council (NERC) (large grant NE/K010689/1). D.L.J., O.V.G. and P.N.G. acknowledge the support of the Centre for Environmental Biotechnology Project funded by the European Regional Development Fund (ERDF) through the Welsh Government. D.L.J. and P.N.G. thank Natural Environment Research Council (NERC) for funding the project ‘Plastic Vectors’ (NE/S004548/1). 16S rRNA sequencing and thework of A.A.K.was
supported by a grant from Ministry of Science and Higher Education of Russian Federation allocated to the Kurchatov Center for Genome Research (grant 075–15-2019–1659). The work of S.V.T. was supported by Ministry of Science and Higher Education within the State assignment of FRC ‘Fundamentals of Biotechnology’ RAS