43 research outputs found

    Expanding the clinical and genetic heterogeneity of SPAX5

    Get PDF
    Mutations in the ATPase family 3-like gene (AFG3L2) have been linked to autosomal-dominant spinocerebellar ataxia type 28 and autosomal recessive spastic ataxia-neuropathy syndrome. Here, we describe the case of a child carrying bi-allelic mutations in AFG3L2 and presenting with ictal paroxysmal episodes associated with neuroimaging suggestive of basal ganglia involvement. Studies in skin fibroblasts showed a significant reduction of AFG3L2 expression. The relatively mild clinical presentation and the benign course, in spite of severe neuroimaging features, distinguish this case from data reported in the literature, and therefore expand the spectrum of neurological and neuroradiological features associated with AFG3L2 mutations

    Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience

    Get PDF
    The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients\u2019 selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era

    Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study

    Get PDF
    Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy

    A next generation sequencing-based analysis of a large cohort of ataxic patients refines the clinical spectrum associated with spinocerebellar ataxia 21

    Get PDF
    Background and purpose: Spinocerebellar ataxia 21 (SCA21) is a rare autosomal dominant neurodegenerative disorder caused by TMEM240 gene mutations. To date, SCA21 has been reported only in a limited number of families worldwide. Here, we describe clinical and molecular findings in five additional SCA21 patients from four unrelated families, diagnosed through a multicentre next generation sequencing-based molecular screening project on a large cohort of patients with degenerative and congenital ataxias. Methods: A cohort of 393 patients with ataxia of unknown aetiology was selected. Following the identification of heterozygous pathogenic TMEM240 variants using a target resequencing panel, we carried out an in-depth phenotyping of the novel SCA21 patients. Results: Five patients from four unrelated families, three of Italian and one of Libyan origin, were identified. These patients were carriers of previously reported TMEM240 mutations. Clinically, our SCA21 cohort includes both adult onset, slowly progressive cerebellar ataxias associated with cognitive impairment resembling cerebellar cognitive affective syndrome and early onset forms associated with cognitive delay, neuropsychiatric features, or evidence of hypomyelination on brain magnetic resonance imaging. None of our patients exhibited signs of extrapyramidal involvement. The so-called \u201crecurrent\u201d c.509C>T (p.Pro170Leu) mutation was detected in two of four families, corroborating its role as a hot spot. Conclusions: Our results confirm that SCA21 is present also in Italy, suggesting that it might not be as rare as previously thought. The phenotype of these novel SCA21 patients indicates that slowly progressive cerebellar ataxia, and cognitive and psychiatric symptoms are the most typical clinical features associated with mutations in the TMEM240 gene

    Proximal weakness involvement in the first Italian case of Charcot-Marie-Tooth 2CC harboring a novel frameshift variant in NEFH

    No full text
    Charcot-Marie-Tooth (CMT) diseases are a clinically and genetically heterogeneous group of disorders. Different variants in the neurofilament heavy chain (NEFH) gene have been described to cause the CMT2CC subtype. Here we report the first Italian patient affected by CMT2CC, harboring a novel variant in NEFH. In describing our patient, we also reviewed previously CMT2CC individuals, and suggested to consider NEFH variant if patients have an axonal sensory-motor neuropathy with a prominent proximal muscles involvement with early requirement of walking aids or wheelchair, remembering a motor neuron disorder

    Multimodal evaluation of an Italian family with a hereditary spastic paraplegia and POLR3A mutations

    No full text
    We describe an Italian family with adult-onset pure hereditary spastic paraplegia due to biallelic variants in POLR3A gene [c.1909 + 22G > A and c.3839dupT (p.M1280fs*20]. MRI showed a mild hyperintensity of superior cerebellar peduncles and cervical spinal cord atrophy. The neurophysiological metrics about intracortical excitability showed higher values of motor thresholds and a significant reduction of short interval intracortical inhibition (SICI) in the patient with a more severe phenotype. Our multimodal evaluation further expands the wide phenotypic spectrum associated with mutations in the POLR3A gene. An extensive genotype–phenotype correlation study is necessary to explain the role of the many new mutations on the function of protein

    Spinocerebellar ataxia 48 presenting with ataxia associated with cognitive, psychiatric, and extrapyramidal features: A report of two Italian families

    No full text
    Introduction: Spinocerebellar ataxia 48 has recently been described as an adult onset ataxia associated with a cerebellar cognitive affective syndrome, caused by a heterozygous mutation in the STUB1 gene. Methods: We characterized the clinical and neuroimaging phenotype of eight patients from two autosomal dominant ataxia multigenerational Italian families, in whom we conducted whole exome sequencing, targeted multigene sequencing, and Sanger sequencing studies. Results: We describe a complex syndrome characterized by ataxia and cognitive-psychiatric disorder in all cases, variably associated with chorea, parkinsonism, dystonia, urinary symptoms, and epilepsy. MRI showed a significant cerebellar atrophy, coupled to a T2-weighted hyperintensity affecting the dentate nuclei and extending to the middle cerebellar peduncles, whereas FDG-PET studies revealed glucose hypometabolism in cerebellum, striatum, and cerebral cortex. We identified two different novel STUB1 mutations segregating in the two families. One of the two mutations, p.(Gly33Ser), occurs in the TRP domain, whereas p.(Pro228Ser) is located in the ubiquitin ligase region. Discussion: We emphasize the similarity of the described clinical picture with that of SCAR16, an autosomal recessive ataxia caused by biallelic mutations in the same gene, and of spinocerebellar ataxia type 17, which is considered the main Huntington's disease-like syndrome. The pathogenesis of the disease and the relationship between SCA48 and SCAR16 remain to be clarified

    Neuroacanthocytosis Syndromes in an Italian Cohort: Clinical Spectrum, High Genetic Variability and Muscle Involvement

    Get PDF
    Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis, progressive degeneration of the basal ganglia and neuromuscular features with characteristic persistent hyperCKemia. The main NA syndromes include autosomal recessive chorea-acanthocytosis (ChAc) and X-linked McLeod syndrome (MLS). A series of Italian patients selected through a multicenter study for these specific neurological phenotypes underwent DNA sequencing of the VPS13A and XK genes to search for causative mutations. Where it has been possible, muscle biopsies were obtained and thoroughly investigated with histochemical assays. A total of nine patients from five different families were diagnosed with ChAC and had mostly biallelic changes in the VPS13A gene (three nonsense, two frameshift, three splicing), while three patients from a single X-linked family were diagnosed with McLeod syndrome and had a deletion in the XK gene. Despite a very low incidence (only one thousand cases of ChAc and a few hundred MLS cases reported worldwide), none of the 8 VPS13A variants identified in our patients is shared by two families, suggesting the high genetic variability of ChAc in the Italian population. In our series, in line with epidemiological data, McLeod syndrome occurs less frequently than ChAc, although it can be easily suspected because of its X-linked mode of inheritance. Finally, histochemical studies strongly suggest that muscle pathology is not simply secondary to the axonal neuropathy, frequently seen in these patients, but primary myopathic alterations can be detected in both NA syndromes
    corecore