3,197 research outputs found

    Breaking Eight-fold Degeneracies in Neutrino CP Violation, Mixing, and Mass Hierarchy

    Get PDF
    We identify three independent two-fold parameter degeneracies (\delta, \theta_{13}), sgn(\delta m^2_{31}) and (\theta_{23}, \pi/2-\theta_{23}) inherent in the usual three-neutrino analysis of long-baseline neutrino experiments, which can lead to as much as an eight-fold degeneracy in the determination of the oscillation parameters. We discuss the implications these degeneracies have for detecting CP violation and present criteria for breaking them. A superbeam facility with a baseline at least as long as the distance between Fermilab and Homestake (1290 km) and a narrow band beam with energy tuned so that the measurements are performed at the first oscillation peak can resolve all the ambiguities other than the (\theta_{23}, \pi/2-\theta_{23}) ambiguity (which can be resolved at a neutrino factory) and a residual (\delta, \pi-\delta) ambiguity. However, whether or not CP violation occurs in the neutrino sector can be ascertained independently of the latter two ambiguities. The (\delta,\pi-\delta) ambiguity can be eliminated by performing a second measurement to which only the \cos\delta terms contribute. The hierarchy of mass eigenstates can be determined at other oscillation peaks only in the most optimistic conditions, making it necessary to use the first oscillation maximum. We show that the degeneracies may severely compromise the ability of the proposed SuperJHF-HyperKamiokande experiment to establish CP violation. In our calculations we use approximate analytic expressions for oscillation probabilitites that agree with numerical solutions with a realistic Earth density profile.Comment: Revtex (singlespaced), 35 pages, 15 postscript figures, uses psfig.st

    Signals of R-parity violating supersymmetry in neutrino scattering at muon storage rings

    Get PDF
    Neutrino oscillation signals at muon storage rings can be faked by supersymmetric (SUSY) interactions in an R-parity violating scenario. We investigate the τ\tau-appearance signals for both long-baseline and near-site experiments, and conclude that the latter is of great use in distinguishing between oscillation and SUSY effects. On the other hand, SUSY can cause a manifold increase in the event rate for wrong-sign muons at a long-baseline setting, thereby providing us with signatures of new physics.Comment: 7 pages LaTeX, 4 ps figures, accepted for publication in Phys. Rev.

    Transverse momentum distribution of Upsilon production in hadronic collisions

    Full text link
    We calculate the transverse momentum p_T distribution for production of the Upsilon states in hadronic reactions. For small pT(≀M΄)p_T (\leq M_\Upsilon), we resum to all orders in the strong coupling alpha_s the process-independent large logarithmic contributions that arise from initial-state gluon showers. We demonstrate that the p_T distribution at low p_T is dominated by the region of small impact parameter b and that it may be computed reliably in perturbation theory. We express the cross section at large p_T by the alpha_s^3 lowest-order non-vanishing perturbative contribution. Our results are consistent with data from the Fermilab Tevatron collider.Comment: 24 pages latex; 9 postscript files of figures. Presentation improved; new figure and references added; conclusions unaltered. Version to be published in Physical Review

    An Extremely Deep Wide-Field Near-Infrared Survey: Bright Galaxy Counts and Local Large Scale Structure

    Full text link
    We present a deep, wide-field near-infrared (NIR) survey over five widely separated fields at high Galactic latitude covering a total of ~ 3 deg^2 in J, H, and Ks. The deepest areas of the data (~ 0.25 deg^2) extend to a 5 sigma limiting magnitude of JHKs > 24 in the AB magnitude system. Although depth and area vary from field to field, the overall depth and large area of this dataset make it one of the deepest wide-field NIR imaging surveys to date. This paper discusses the observations, data reduction, and bright galaxy counts in these fields. We compare the slope of the bright galaxy counts with the Two Micron All Sky Survey (2MASS) and other counts from the literature and explore the relationship between slope and supergalactic latitude. The slope near the supergalactic equator is sub- Euclidean on average pointing to the possibility of a decreasing average space density of galaxies by ~ 10-15% over scales of ~ 250-350 Mpc. On the contrary, the slope at high supergalactic latitudes is strongly super-Euclidean on average suggesting an increase in the space density of galaxies as one moves from the voids just above and below the supergalactic plane out to distances of ~ 250-350 Mpc. These results suggest that local large scale structure could be responsible for large discrepancies in the measured slope between different studies in the past. In addition, the local universe away from the supergalactic plane appears to be underdense by ~ 25-100% relative to the space densities of a few hundred megaparsecs distant. Subject headings: cosmology: observations and large scale structure of universe-galaxies: fundamental parameters (counts)-infrared: galaxiesComment: Accepted to ApJS, 18 Pages, 14 Figures, 8 Table

    Astrophysical Constraints on Large Extra Dimensions

    Get PDF
    In the Kaluza-Klein (KK) scenario with n large extra dimensions where gravity propagates in the 4+n dimensional bulk of spacetime while gauge and matter fields are confined to a four dimensional subspace, the light graviton KK modes can be produced in the Sun, red giants and supernovae. We study the energy-loss rates through photon-photon annihilation, electron-positron annihilation, gravi-Compton-Primakoff scattering, gravi-bremsstrahlung and nucleon-nucleon bremsstrahlung, and derive lower limits to the string scale M_S. The most stringent lower limit obtained from SN1987A leads to MS>30−130M_S> 30 - 130 TeV (2.1-9.2 TeV) for the case of two (three) large extra dimensions.Comment: 12 pages, 4 figures, 2 tables; minor corrections, references adde

    Measuring Higgs boson couplings at the LHC

    Get PDF
    For an intermediate mass Higgs boson with SM-like couplings the LHC allows observation of a variety of decay channels in production by gluon fusion and weak boson fusion. Cross section ratios provide measurements of various ratios of Higgs couplings, with accuracies of order 15% for 100 fb^{-1} of data in each of the two LHC experiments. For Higgs masses above 120 GeV, minimal assumptions on the Higgs sector allow for an indirect measurement of the total Higgs boson width with an accuracy of 10 to 20%, and of the H-->WW partial width with an accuracy of about 10%.Comment: 25 pages, Revtex, 1 figur
    • 

    corecore