1,524 research outputs found
Accretion in the Early Kuiper Belt II. Fragmentation
We describe new planetesimal accretion calculations in the Kuiper Belt that
include fragmentation and velocity evolution. All models produce two power law
cumulative size distributions, N_C propto r^{-q}, with q = 2.5 for radii less
than 0.3-3 km and q = 3 for radii exceeding 1-3 km. The power law indices are
nearly independent of the initial mass in the annulus, the initial eccentricity
of the planetesimal swarm, and the initial size distribution of the
planetesimal swarm. The transition between the two power laws moves to larger
radii as the initial eccentricity increases. The maximum size of objects
depends on their intrinsic tensile strength; Pluto formation requires a
strength exceeding 300 erg per gram. Our models yield formation timescales for
Pluto-sized objects of 30-40 Myr for a minimum mass solar nebula. The
production of several `Plutos' and more than 10^5 50 km radius Kuiper Belt
objects leaves most of the initial mass in 0.1-10 km radius objects that can be
collisionally depleted over the age of the solar system. These results resolve
the puzzle of large Kuiper Belt objects in a small mass Kuiper Belt.Comment: to appear in the Astronomical Journal (July 1999); 54 pages including
7 tables and 13 figure
Collisional Cascades in Planetesimal Disks I. Stellar Flybys
We use a new multiannulus planetesimal accretion code to investigate the
evolution of a planetesimal disk following a moderately close encounter with a
passing star. The calculations include fragmentation, gas and
Poynting-Robertson drag, and velocity evolution from dynamical friction and
viscous stirring. We assume that the stellar encounter increases planetesimal
velocities to the shattering velocity, initiating a collisional cascade in the
disk. During the early stages of our calculations, erosive collisions damp
particle velocities and produce substantial amounts of dust. For a wide range
of initial conditions and input parameters, the time evolution of the dust
luminosity follows a simple relation, L_d/L_{\star} = L_0 / [alpha +
(t/t_d)^{beta}]. The maximum dust luminosity L_0 and the damping time t_d
depend on the disk mass, with L_0 proportional to M_d and t_d proportional to
M_d^{-1}. For disks with dust masses of 1% to 100% of the `minimum mass solar
nebula' (1--100 earth masses at 30--150 AU), our calculations yield t_d approx
1--10 Myr, alpha approx 1--2, beta = 1, and dust luminosities similar to the
range observed in known `debris disk' systems, L_0 approx 10^{-3} to 10^{-5}.
Less massive disks produce smaller dust luminosities and damp on longer
timescales. Because encounters with field stars are rare, these results imply
that moderately close stellar flybys cannot explain collisional cascades in
debris disk systems with stellar ages of 100 Myr or longer.Comment: 33 pages of text, 12 figures, and an animation. The paper will appear
in the March 2002 issue of the Astronmomical Journal. The animation and a
copy of the paper with full resolution figures are at S. Kenyon's planet
formation website: http://cfa-www.harvard.edu/~kenyon/p
Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence
Size-selective concentration of particles in a weakly turbulent
protoplanetary nebula may be responsible for the initial collection of
chondrules and other constituents into primitive body precursors. This paper
presents the main elements of this process of turbulent concentration. In the
terrestrial planet region, both the characteristic size and size distribution
of chondrules are explained. "Fluffier" particles would be concentrated in
nebula regions which were at a lower gas density and/or more intensely
turbulent. The spatial distribution of concentrated particle density obeys
multifractal scaling}, suggesting a close tie to the turbulent cascade process.
This scaling behavior allows predictions of the probability distributions for
concentration in the protoplanetary nebula to be made. Large concentration
factors (>10^5) are readily obtained, implying that numerous zones of particle
density significantly exceeding the gas density could exist. If most of the
available solids were actually in chondrule sized particles, the ensuing
particle mass density would become so large that the feedback effects on gas
turbulence due to mass loading could no longer be neglected. This paper
describes the process, presenting its basic elements and some implications,
without including the effects of mass loading.Comment: 34 pages, 7 figures; in press for Astrophys. J; expected Jan 01 2001
issu
Accretion in the Early Kuiper Belt I. Coagulation and Velocity Evolution
We describe planetesimal accretion calculations in the Kuiper Belt.
Our evolution code simulates planetesimal growth in a single annulus and
includes velocity evolution but not fragmentation. Test results match analytic
solutions and duplicate previous simulations at 1 AU.
In the Kuiper Belt, simulations without velocity evolution produce a single
runaway body with a radius of 1000 km on a time scale inversely proportional to
the initial mass in the annulus. Runaway growth occurs in 100 Myr for 10 earth
masses and an initial eccentricity of 0.001 in a 6 AU annulus centered at 35
AU. This mass is close to the amount of dusty material expected in a minimum
mass solar nebula extrapolated into the Kuiper Belt.
Simulations with velocity evolution produce runaway growth on a wide range of
time scales. Dynamical friction and viscous stirring increase particle
velocities in models with large (8 km radius) initial bodies. This velocity
increase delays runaway growth by a factor of two compared to models without
velocity evolution. In contrast, collisional damping dominates over dynamical
friction and viscous stirring in models with small (80--800 m radius) initial
bodies. Collisional damping decreases the time scale to runaway growth by
factors of 4--10 relative to constant velocity calculations. Simulations with
minimum mass solar nebulae, 10 earth masses, reach runaway growth on time
scales of 20-40 Myr with 80 m initial bodies, 50-100 Myr with 800 m bodies, and
75-250 Myr for 8 km initial bodies. These growth times vary linearly with the
mass of the annulus but are less sensitive to the initial eccentricity than
constant velocity models.Comment: 45 pages of text (including 5 tables), 31 pages of figur
Exotic smooth structures and symplectic forms on closed manifolds
We give a short proof of the (known) result that there are no Kaehler
structures on exotic tori. This yields a negative solution to a problem posed
by Benson and Gordon. W discuss the symplectic version of the problem and
analyze results which yield an evidence for the conjecture that there are no
symplectic structures on exotic tori.Comment: AMSLaTeX, 16 pages, a new version. A survey of the symplectic version
of the problem is adde
Evidence for Companion-Induced Secular Changes in the Turbulent Disk of a Be Star in the LMC MACHO Database
The light curve of a blue variable in the MACHO LMC database (FTS ID
78.5979.72) appeared nearly unvarying for ~4 years (quasi-flat segment) but
then rapidly changed to become periodic with noisy minima for the remaining 4
years (periodic segment); there are no antecedent indications of a gradual
approach to this change. Lomb Periodogram analyses indicate the presence of two
distinct periods of ~61 days and 8 days in both the quasi-flat and the periodic
segments. Minima of the periodic segment cover at least 50% of the orbital
period and contain spikes of light with the 8-day period; maxima do not show
this short period. The system typically shows maxima to be redder than minima.
The most recent OGLE-III light curve shows only a 30-day periodicity. The
variable's V and R magnitudes and color are those of a Be star, and recent sets
of near infrared spectra four days apart, secured during the time of the
OGLE-III data, show H-alpha emission near and at a maximum, confirming its Be
star characteristics. The model that best fits the photometric behavior
consists of a thin ring-like circumstellar disk of low mass with four obscuring
sectors orbiting the central B star in unison at the 61-day period. The central
star peers through the three equi- spaced separations between the four sectors
producing the 8-day period. The remainder of the disk contains hydrogen in
emission making maxima appear redder. A companion star of lower mass in an
inclined and highly eccentric orbit produces an impulsive perturbation near its
periastron to change the disk's orientation, changing eclipses from partial to
complete within ~ 10 days.Comment: 42 pages, 14 figures, and 2 tables Submitted to AJ v3: Title changed,
figures added, model modifie
On the Lebesgue measure of Li-Yorke pairs for interval maps
We investigate the prevalence of Li-Yorke pairs for and
multimodal maps with non-flat critical points. We show that every
measurable scrambled set has zero Lebesgue measure and that all strongly
wandering sets have zero Lebesgue measure, as does the set of pairs of
asymptotic (but not asymptotically periodic) points.
If is topologically mixing and has no Cantor attractor, then typical
(w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally
admits an absolutely continuous invariant probability measure (acip), then
typical pairs have a dense orbit for . These results make use of
so-called nice neighborhoods of the critical set of general multimodal maps,
and hence uniformly expanding Markov induced maps, the existence of either is
proved in this paper as well.
For the setting where has a Cantor attractor, we present a trichotomy
explaining when the set of Li-Yorke pairs and distal pairs have positive
two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure
Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research
The authors wish to thank the Earth-Life Science Institute of the Tokyo Institute of Technology for supporting and hosting the TDE Focus Group meeting on which this publication is based. The Thermodynamics,
Disequilibrium, Evolution (TDE) Focus Group is supported by the NASA Astrobiology Institute (NAI). Parts of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract
with the National Aeronautics and Space Administration; LMB and MJR are supported by NAI (Icy Worlds). ES thanks the ORIGINS COST Action (TD1308) for the STSM Reference Number: COST-STSM-TD1308-26973.
ES is supported by Agreement ASI/INAF 2015 - 002 - R.O. JHEC acknowledges the financial support of the Spanish MINCINN project FIS2013-48444-C2-2-P
Astrophysical turbulence modeling
The role of turbulence in various astrophysical settings is reviewed. Among
the differences to laboratory and atmospheric turbulence we highlight the
ubiquitous presence of magnetic fields that are generally produced and
maintained by dynamo action. The extreme temperature and density contrasts and
stratifications are emphasized in connection with turbulence in the
interstellar medium and in stars with outer convection zones, respectively. In
many cases turbulence plays an essential role in facilitating enhanced
transport of mass, momentum, energy, and magnetic fields in terms of the
corresponding coarse-grained mean fields. Those transport properties are
usually strongly modified by anisotropies and often completely new effects
emerge in such a description that have no correspondence in terms of the
original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic
Detection of a transit of the super-Earth 55 Cnc e with Warm Spitzer
We report on the detection of a transit of the super-Earth 55 Cnc e with warm
Spitzer in IRAC's 4.5-micron band. Our MCMC analysis includes an extensive
modeling of the systematic effects affecting warm Spitzer photometry, and
yields a transit depth of 410 +- 63 ppm, which translates to a planetary radius
of 2.08 +- 0.16 R_Earth as measured in IRAC 4.5-micron channel. A planetary
mass of 7.81 +- 0.58 M_Earth is derived from an extensive set of
radial-velocity data, yielding a mean planetary density of 4.8 +- 1.3 g cm-3.
Thanks to the brightness of its host star (V = 6, K = 4), 55 Cnc e is a unique
target for the thorough characterization of a super-Earth orbiting around a
solar-type star.Comment: Accepted for publication in A&A on 31 July 2011. 9 pages, 7 figures
and 3 tables. Minor changes. The revised version includes a baseline models
comparison and a new figure presenting the spatially- and time-dependent
terms of the model function used in Eq.
- …