133 research outputs found
First molecular cytogenetic characterization of the MMT 060562 murine breast cancer cell line
To provide detailed cytogenetic characterization of the MMT 060562 cancer cell lin
Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile
While previous research on zoonotic transmission of community-acquired Clostridioides difficile infection (CA-CDI) focused on food-producing animals, the present study aimed to investigate whether dogs are carriers of resistant and/or virulent C. difficile strains. Rectal swabs were collected from 323 dogs and 38 C. difficile isolates (11.8%) were obtained. Isolates were characterized by antimicrobial susceptibility testing, whole-genome sequencing (WGS) and a DNA hybridization assay. Multilocus sequence typing (MLST), core genome MLST (cgMLST) and screening for virulence and antimicrobial resistance genes were performed based on WGS. Minimum inhibitory concentrations for erythromycin, clindamycin, tetracycline, vancomycin and metronidazole were determined by E-test. Out of 38 C. difficile isolates, 28 (73.7%) carried genes for toxins. The majority of isolates belonged to MLST sequence types (STs) of clade I and one to clade V. Several isolates belonged to STs previously associated with human CA-CDI. However, cgMLST showed low genetic relatedness between the isolates of this study and C. difficile strains isolated from humans in Austria for which genome sequences were publicly available. Four isolates (10.5%) displayed resistance to three of the tested antimicrobial agents. Isolates exhibited resistance to erythromycin, clindamycin, tetracycline and metronidazole. These phenotypic resistances were supported by the presence of the resistance genes erm(B), cfr(C) and tet(M). All isolates were susceptible to vancomycin. Our results indicate that dogs may carry virulent and antimicrobial-resistant C. difficile strains
Investigations with GMC2021 in experimental models predictive of antimigraine activity and coronary side-effect potential
Abstract
Several acutely acting antimigraine drugs, including sumatriptan and other second generation 5-HT1D receptor agonists, have the ability to constrict porcine carotid arteriovenous anastomoses as well as the human isolated coronary artery. These two experimental models seem to serve as indicators, respectively, for the therapeutic and coronary side-effect potential of the compounds. Using these two models, we have now investigated the effects of GMC2021 (3-[2-(dimethylanimo)ethyl]-5-[(trifluoromethyl)sulfonyl]oxy][1 H]indole oxalate, a close analogue of sumatriptan. GMC2021 (30, 100, 300 and 1000 μg · kg−1, i.v.) decreased the total carotid blood flow by exclusively decreasing arteriovenous anastomotic blood flow; capillary blood flow to the skin and ears was moderately increased. The mean ± S.E.M. dose of GMC2021 eliciting a 50% decrease (ED50) in the porcine carotid arteriovenous anastomotic blood flow was found to be 1.1 ± 0.3 μmol · kg−1 and the highest dose (1000 μg · kg−1) produced a 67 ± 4% reduction. The carotid haemodynamic effects of GMC2021 were reduced by the selective 5-HT1D receptor antagonist, GR127935 (N-[methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carbboxamide hydrochloride), which completely antagonizes porcine carotid haemodynamic responses to sumatriptan (ED50: 0.16 μmol · kg−1, i.v.). Compared to sumatriptan (pD2: 6.12 ± 0.15; Emax: 31.3 ± 12.3% of contractions to 100 mM K+), GMC2021 was less potent in constricting the human isolated coronary artery (pD2: 5.45 ± 0.2; Emax: 21.0 ± 4.8% of contractions to 100 mM K+). The above results suggest that GMC2021 constricts carotid arteriovenous anastomoses partly by a 5-HT1D receptor and partly by another, probably novel, receptor and that GMC2021 should be able to abort migraine headaches in patients, with perhaps a less propensity for coronary side effects
Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile
Abstract While previous research on zoonotic transmission of community-acquired Clostridioides difficile infection (CA-CDI) focused on food-producing animals, the present study aimed to investigate whether dogs are carriers of resistant and/or virulent C. difficile strains. Rectal swabs were collected from 323 dogs and 38 C. difficile isolates (11.8%) were obtained. Isolates were characterized by antimicrobial susceptibility testing, whole-genome sequencing (WGS) and a DNA hybridization assay. Multilocus sequence typing (MLST), core genome MLST (cgMLST) and screening for virulence and antimicrobial resistance genes were performed based on WGS. Minimum inhibitory concentrations for erythromycin, clindamycin, tetracycline, vancomycin and metronidazole were determined by E-test. Out of 38 C. difficile isolates, 28 (73.7%) carried genes for toxins. The majority of isolates belonged to MLST sequence types (STs) of clade I and one to clade V. Several isolates belonged to STs previously associated with human CA-CDI. However, cgMLST showed low genetic relatedness between the isolates of this study and C. difficile strains isolated from humans in Austria for which genome sequences were publicly available. Four isolates (10.5%) displayed resistance to three of the tested antimicrobial agents. Isolates exhibited resistance to erythromycin, clindamycin, tetracycline and metronidazole. These phenotypic resistances were supported by the presence of the resistance genes erm(B), cfr(C) and tet(M). All isolates were susceptible to vancomycin. Our results indicate that dogs may carry virulent and antimicrobial-resistant C. difficile strains.1 Introduction 2 Methods 2.1 Sampling and ethics 2.2 Isolation and identification of Clostridioides difficile 2.3 Antimicrobial susceptibility testing 2.4 Whole-genome sequencing and comparative genomic analysis 2.5 Statistical analysis 3 Results 3.1 Prevalence of Clostridioides difficile and risk factors for shedding 3.2 Antimicrobial susceptibility testing and detection of antimicrobial resistance determinants 3.3 Genomic characterization of canine Clostridioides difficile 3.4 Genome annotation and comparison 4 Discussio
Is cognitive functioning associated with subjective quality of life in young adults with spina bifida and hydrocephalus?
Objective: To test the hypothesis that cognitive functioning is associated with subjective quality of life of young adults with spina bifida and hydrocephalus (SBHC). Design: Cross-sectional multi-centre study in The Netherlands. Subjects: A total of 110 young adults with SBHC (16-25 years old, 63% female). Methods: Cognitive domains measured were intelligence (Raven Standard Progressive Matrices), memory (Wechsler Memory Scale) and executive functioning (Wisconsin modified Card Sorting Test (WmCST), Trail Making Test A and B (TMT) and UNKA word production test). Subjective quality of life was measured with a visual analogue scale. Correlations and hierarchical regression analysis controlling for age, gender and functional independence were applied. Results: The TMT score was significantly associated (-0.25) with subjective quality of life. In the hierarchical regression analysis both the WmCST and TMT scores were significant determinants of subjective quality of life (Beta values 0.24 and -0.31 respectively). Intelligence, memory and word production were not related to subjective quality of life. All 5 cognitive variables together explained a significant additional 14.6%, of the variance of subjective quality of life (total explained variance 19.9%). Conclusion: Executive functioning was associated with subjective quality of life in young adults with spina bifida and hydrocephalus. This finding underlines the importance of examining cognitive functioning of persons with SBHC in addition to medical and functional status in medical care and outcome research
Time-Dependent Effects of CX3CR1 in a Mouse Model of Mild Traumatic Brain Injury
BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases.
METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury.
RESULTS: During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1-/- mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1-/- mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1-/- mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFβ. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI.
CONCLUSION: Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes
Direct and two-step bioorthogonal probes for Bruton's tyrosine kinase based on ibrutinib: a comparative study
Molecular Physiolog
- …