1,083 research outputs found
An extremal model for amorphous media plasticity
An extremal model for the plasticity of amorphous materials is studied in a
simple two-dimensional anti-plane geometry. The steady-state is analyzed
through numerical simulations. Long-range spatial and temporal correlations in
local slip events are shown to develop, leading to non-trivial and highly
anisotropic scaling laws. In particular, the plastic strain is shown to
statistically concentrate over a region which tends to align perpendicular to
the displacement gradient. By construction, the model can be seen as giving
rise to a depinning transition, the threshold of which (i.e. the macroscopic
yield stress) also reveal scaling properties reflecting the localization of the
activity.Comment: 4 pages, 5 figure
The test bench for the power amplifiers of the SPIRAL-2 SC LINAC
International audienceThe high current driver accelerator of the SPIRAL 2 project uses independently phased SC resonators working at 88 MHz. Solid state power amplifiers equipped with circulators are foreseen to drive the cavities with widely ranging conditions of beam loading. These power devices are developed by industrial companies and a test bench has been studied and manufactured to test the prototypes, to commission all the units before their installation on the accelerator and to be used to test repaired modules. Even if designed to be used at 88 MHz, the test bench can be used at higher frequencies too. The poster describes the test bench as well as the results on the first amplifiers bought for the cryomodule power tests
Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract]
Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin) fractions (Ogier et al., 1999) that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007). However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008). This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007) that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and possible action fields lay within the intermediary context representing the "resources" such as agriculture, forestry, "driving" elements such as mobility, mediation elements such as territories and environment and concurrent elements such as non-cellulosic biomass, the energy mix and the non-energy valorization
Atmospheric and Galactic Production and Propagation of Light Antimatter Nuclei
The production and propagation of light antimatter nuclei has been calculated
using inclusive antiproton production cross sections from a new data analysis,
and coalescence models for the production of composite particles. Particles
were propagated using recently proven phenomenological approaches. The
atmospheric secondary flux is evaluated for the first time. The Galactic flux
obtained are larger than those obtained previously in similar calculations. The
non-annihilating scattering contributions of the propagated particles are
introduced. The preliminary results are shown and discussed.Comment: 4 pages, Contribution to the ICRC 200
Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies
Many of the astrophysical sources and violent phenomena observed in our
Universe are potential emitters of gravitational waves (GWs) and high-energy
neutrinos (HENs). A network of GW detectors such as LIGO and Virgo can
determine the direction/time of GW bursts while the IceCube and ANTARES
neutrino telescopes can also provide accurate directional information for HEN
events. Requiring the consistency between both, totally independent, detection
channels shall enable new searches for cosmic events arriving from potential
common sources, of which many extra-galactic objects.Comment: 4 pages. To appear in the Proceedings of the 2d Heidelberg Workshop:
"High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources",
Heidelberg (Germany), January 13-16, 200
Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector
Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by ¿µ chargedcurrent interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within ±500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,¿ emitted as neutrinos of all flavours and on the ratio f¿ = Etot,¿/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,¿ < 4.0 × 1053 erg and f¿ < 0.15 (respectively, Etot,¿ < 3.2 × 1053 erg and f¿ < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been testedPeer ReviewedA. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, M. Bissinger, J. Boumaaza, M. Bouta, M.C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, L. Caramete, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, T.N. Chau, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J.A.B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A.S.M. Cruz, A.F. Díaz, B. De Martino, C. Distefano, I. Di Palma, A. Domi, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, S. Hallmann, H. van Haren, A.J. Heijboer, Y. Hello, J.J. Hernández-Rey, J. Hößl, J. Hofestädt, F. Huang, G. Illuminati, C.W. James, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, D. Lopez-Coto, S. Loucatos, L. Maderer, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J.A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, L. Nauta, S. Navas, E. Nezri, B. Ó Fearraigh, A. Păun, G.E. Păvălaş, M. Perrin-Terrin, V. Pestel, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, S. Reck, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D.F.E. Samtleben, M. Sanguineti, P. Sapienza, J. Schnabel, J. Schumann, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, S.J. Tingay, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J.D. Zornoza, J. ZúñigaPostprint (published version
ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis
[EN] A search for astrophysical pointlike neutrino sources using the data collected by the ANTARES detector between 2007 January 29 and 2017 December 31 is presented. A likelihood method is used to assess the signicance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: (a) a subsample of the Fermi 3LAC catalog of blazars, (b) a jet- obscured population of active galactic nuclei, (c) a sample of hard X-ray selected radio galaxies, (d) a star-forming galaxy catalog, and (e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a signi¿cant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the catalog of radio galaxies with an equal-weights hypothesis, with a pre-trial p- value equivalent to a 2.8sigma excess, which is equivalent to 1.6sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most signi¿cant within the Fermi 3LAC sample, with five ANTARES events located less than one degree from the source.
This blazar showed evidence of ¿aring activity in Fermi data, in spacetime coincidence with a
high-energy track detected by IceCube. An a posteriori signicance of 2.6sigma for the combination of
ANTARES and IceCube data is reported.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.; Aublin, J.... (2021). ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. The Astrophysical Journal. 911(1):1-11. https://doi.org/10.3847/1538-4357/abe53c111911
Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope
[EN] On 2019 October 1, the IceCube Collaboration detected a muon track neutrino with a high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was indicated as the most likely counterpart of the IceCube track. More recently, the follow-up campaign of the IceCube alerts by ZTF suggested a second TDE, AT2019fdr, as a promising counterpart of another IceCube muon track candidate, IC200530A, detected on 2020 May 30. Here, these
intriguing associations are followed-up by searching for neutrinos in the ANTARES detector from the directions of AT2019dsg and AT2019fdr using a time-integrated approach. As no significant evidence for space clustering is found in the ANTARES data, upper limits on the one-flavor neutrino flux and fluence are set.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Alves, S.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.... (2021). Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope. The Astrophysical Journal. 920(1):1-6. https://doi.org/10.3847/1538-4357/ac16d616920
ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs
[EN] The first gamma-ray burst detections by Imaging Atmospheric Cherenkov Telescopes
have been recently announced: GRB 190114C, detected by MAGIC, GRB 180720B
and GRB 190829A, observed by H.E.S.S. A dedicated search for neutrinos in space and
time coincidence with the gamma-ray emission observed by IACTs has been performed using
ANTARES data. The search covers both the prompt and afterglow phases, yielding
no neutrinos in coincidence with the three GRBs studied. Upper limits on the energetics
of the neutrino emission are inferred. The resulting upper limits are several orders of
magnitude above the observed gamma-ray emission, and they do not allow to constrain the
available models.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -BC44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.... (2021). ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. 2021(3):1-16. https://doi.org/10.1088/1475-7516/2021/03/092S1162021
Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data
[EN] Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through p¿ interactions. In this work, ANTARES data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability time-scale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed by maximizing the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimization procedure, 90 per cent confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10 per cent.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariata l'energie atomique et auxenergies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.... (2021). Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data. Monthly Notices of the Royal Astronomical Society. 500(4):5614-5628. https://doi.org/10.1093/mnras/staa3503S56145628500
- …