24 research outputs found

    Phase space factors and half-life predictions for Majoron emitting ββ\beta^-\beta^- decay

    Full text link
    A complete calculation of phase space factors (PSF) for Majoron emitting 0νββ0\nu\beta^-\beta^- decay modes is presented. The calculation makes use of exact Dirac wave functions with finite nuclear size and electron screening and includes life-times, single electron spectra, summed electron spectra, and angular electron correlations. Combining these results with recent interacting boson nuclear matrix elements (NME) we make half-life predictions for the the ordinary Majoron decay (spectral index nn=1). Furthermore, comparing theoretical predictions with the obtained experimental lower bounds for this decay mode we are able to set limits on the effective Majoron-neutrino coupling constant geeM\langle g_{ee}^M\rangle

    Occupation probabilities of single particle levels using the microscopic interacting boson model: Application to some nuclei of interest in neutrinoless double- β

    Full text link
    We have developed a new method to calculate the occupancies of single particle levels in atomic nuclei. This method has been developed in the context of the microscopic interacting boson model, in which neutron and proton degrees of freedom are treated explicitly. The energies of the single particle levels constitute a very important input for the calculation of the occupancies in this method. In principle these energies can be considered as input parameters that can be fitted to reproduce the experimental occupancies. Instead of fitting, in this study we have extracted the single particle energies from experimental data on nuclei with a particle more or one particle less than a shell closure. We provide the sets of these single particle energies suitable for several major shells and apply our method to calculate the occupancies of several nuclei of interest in neutrinoless double-β decay using these sets. Our results are compared with other theoretical calculations and experimental occupancies, when available.peerReviewe

    New supersymmetric quartet of nuclei in the A=190 mass region

    Get PDF
    We present evidence for a new supersymmetric quartet in the A=190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleaus 194 Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the 192,193 Os and 193,194 Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193 Os, and suggest that its spectroscopic properties be measured in dedicated experiments.Comment: 5 pages, 4 figures, updated figures and revised text, Physical Review C, Rapid Communication, in pres

    Relationship between X(5)-models and the interacting boson model

    Get PDF
    The connections between the X(5)-models (the original X(5) using an infinite square well, X(5)-β8\beta^8, X(5)-β6\beta^6, X(5)-β4\beta^4, and X(5)-β2\beta^2), based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the γ\gamma degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in [1] for the E(5)-models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5)-models energies is performed, later on the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5)-models, although the agreement is not so impressive as for the E(5)-models. From the fitted IBM parameters the corresponding energy surface can be extracted and it is obtained that, surprisingly, only the X(5) case corresponds in the moderate large N limit to an energy surface very close to the one expected for a critical point, while the rest of models seat a little farther.Comment: Accepted in Physical Review
    corecore