700 research outputs found
Ram pressure and dusty red galaxies - key factors in the evolution of the multiple cluster system Abell 901/902
We present spectroscopic observations of 182 disk galaxies (96 in the cluster
and 86 in the field environment) in the region of the Abell 901/902 multiple
cluster system, which is located at a redshift of . The presence
of substructures and non-Gaussian redshift distributions indicate that the
cluster system is dynamically young and not in a virialized state. We find
evidence for two important galaxy populations. \textit{Morphologically
distorted galaxies} are probably subject to increased tidal interactions. They
show pronounced rotation curve asymmetries at intermediate cluster-centric
radii and low rest-frame peculiar velocities. \textit{Morphologically
undistorted galaxies} show the strongest rotation curve asymmetries at high
rest-frame velocities and low cluster-centric radii. Supposedly, this group is
strongly affected by ram-pressure stripping due to interaction with the
intra-cluster medium. Among the morphologically undistorted galaxies, dusty red
galaxies have particularly strong rotation curve asymmetries, suggesting ram
pressure is an important factor in these galaxies. Furthermore, dusty red
galaxies on average have a bulge-to-total ratio higher by a factor of two than
cluster blue cloud and field galaxies. The fraction of kinematically distorted
galaxies is 75% higher in the cluster than in the field environment. This
difference mainly stems from morphological undistorted galaxies, indicating a
cluster-specific interaction process that only affects the gas kinematics but
not the stellar morphology. Also the ratio between gas and stellar scale length
is reduced for cluster galaxies compared to the field sample. Both findings
could be best explained by ram-pressure effects.Comment: Electronic version published in Astronomy and Astrophysics Volume
549, Page 0; 19 pages, 21 figure
Tully-Fisher analysis of the multiple cluster system Abell 901/902
We derive rotation curves from optical emission lines of 182 disk galaxies
(96 in the cluster and 86 in the field) in the region of Abell 901/902 located
at . We focus on the analysis of B-band and stellar-mass
Tully-Fisher relations. We examine possible environmental dependencies and
differences between normal spirals and "dusty red" galaxies, i.e. disk galaxies
that have red colors due to relatively low star formation rates. We find no
significant differences between the best-fit TF slope of cluster and field
galaxies. At fixed slope, the field population with high-quality rotation
curves (57 objects) is brighter by \Delta M_{B}=-0\fm42\pm0\fm15 than the
cluster population (55 objects). We show that this slight difference is at
least in part an environmental effect. The scatter of the cluster TFR increases
for galaxies closer to the core region, also indicating an environmental
effect. Interestingly, dusty red galaxies become fainter towards the core at
given rotation velocity (i.e. total mass). This indicates that the star
formation in these galaxies is in the process of being quenched. The
luminosities of normal spiral galaxies are slightly higher at fixed rotation
velocity for smaller cluster-centric radii. Probably these galaxies are
gas-rich (compared to the dusty red population) and the onset of ram-pressure
stripping increases their star-formation rates. The results from the TF
analysis are consistent with and complement our previous findings. Dusty red
galaxies might be an intermediate stage in the transformation of infalling
field spiral galaxies into cluster S0s, and this might explain the well-known
increase of the S0 fraction in galaxy clusters with cosmic time.Comment: Accepted for publication in Astronomy and Astrophysics; 16 pages, 14
figure
Investigating the Filled Gel Model in Cheddar Cheese Through Use of Sephadex Beads
Cheese can be modeled as a filled gel whereby milkfat globules are dispersed in a casein gel network. We determined the filler effects using Sephadex beads (GE Healthcare Life Sciences, Pittsburgh, PA) as a model filler particle. Ideally, such a model could be used to test novel filler particles to replace milkfat in low-fat cheese. Low-filler (6% particles), reduced-filler (16%), and full-filler (33%) cheeses were produced using either Sephadex beads of varying sizes (20 to 150 μm diameter) or milkfat. Small- and large-strain rheological tests were run on each treatment at 8, 12, and 18 wk after cheese manufacturing. Differences in rheological properties were caused primarily by the main effects of filler volume and type (milkfat vs. Sephadex), whereas filler size had no obvious effect. All treatments showed a decrease in deformability and an increase in firmness as filler volume increased above 25%, although the beads exhibited a greater reinforcing effect and greater energy recovery than milkfat
A randomised controlled trial of succinylated gelatin (4%) fluid on urinary acute kidney injury biomarkers in cardiac surgical patients
Background
Fluid resuscitation is frequently required for cardiac surgical patients admitted to the intensive care unit. The ideal fluid of choice in regard to efficacy and safety remains uncertain. Compared with crystalloid fluid, colloid fluid may result in less positive fluid balance. However, some synthetic colloids are associated with increased risk of acute kidney injury (AKI). This study compared the effects of succinylated gelatin (4%) (GEL) with compound sodium lactate (CSL) on urinary AKI biomarkers in patients after cardiac surgery.
Methods
Cardiac surgical patients who required an intravenous fluid bolus of at least 500 mL postoperatively were randomly allocated to receive GEL or CSL as the resuscitation fluid of choice for the subsequent 24 h. Primary outcomes were serial urinary neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C concentrations measured at baseline, 1 h, 5 h and 24 h after enrolment, with higher concentrations indicating greater kidney injury. Secondary biomarker outcomes included urinary clusterin, α1-microglobulin and F2-isoprostanes concentrations. Differences in change of biomarker concentration between the two groups over time were compared with mixed-effects regression models. Statistical significance was set at P < 0.05.
Results
Forty cardiac surgical patients (n = 20 per group) with similar baseline characteristics were included. There was no significant difference in the median volume of fluid boluses administered over 24 h between the GEL (1250 mL, Q1–Q3 500–1750) and CSL group (1000 mL, Q1–Q3 500–1375) (P = 0.42). There was a significantly greater increase in urinary cystatin C (P < 0.001), clusterin (P < 0.001), α1-microglobulin (P < 0.001) and F2-isoprostanes (P = 0.020) concentrations over time in the GEL group, compared to the CSL group. Change in urinary NGAL concentration (P = 0.68) over time was not significantly different between the groups. The results were not modified by adjustment for either urinary osmolality or EuroSCORE II predicted risk of mortality.
Conclusions
This preliminary randomised controlled trial showed that use of succinylated gelatin (4%) for fluid resuscitation after cardiac surgery was associated with increased biomarker concentrations of renal tubular injury and dysfunction, compared to crystalloid fluid. These results generate concern that use of intravenous gelatin fluid may contribute to clinically relevant postoperative AKI
Stellar science from a blue wavelength range - A possible design for the blue arm of 4MOST
From stellar spectra, a variety of physical properties of stars can be
derived. In particular, the chemical composition of stellar atmospheres can be
inferred from absorption line analyses. These provide key information on large
scales, such as the formation of our Galaxy, down to the small-scale
nucleosynthesis processes that take place in stars and supernovae. By extending
the observed wavelength range toward bluer wavelengths, we optimize such
studies to also include critical absorption lines in metal-poor stars, and
allow for studies of heavy elements (Z>38) whose formation processes remain
poorly constrained. In this context, spectrographs optimized for observing blue
wavelength ranges are essential, since many absorption lines at redder
wavelengths are too weak to be detected in metal-poor stars. This means that
some elements cannot be studied in the visual-redder regions, and important
scientific tracers and science cases are lost. The present era of large public
surveys will target millions of stars. Here we describe the requirements
driving the design of the forthcoming survey instrument 4MOST, a multi-object
spectrograph commissioned for the ESO VISTA 4m-telescope. We focus here on
high-density, wide-area survey of stars and the science that can be achieved
with high-resolution stellar spectroscopy. Scientific and technical
requirements that governed the design are described along with a thorough line
blending analysis. For the high-resolution spectrograph, we find that a
sampling of >2.5 (pixels per resolving element), spectral resolution of 18000
or higher, and a wavelength range covering 393-436 nm, is the most
well-balanced solution for the instrument. A spectrograph with these
characteristics will enable accurate abundance analysis (+/-0.1 dex) in the
blue and allow us to confront the outlined scientific questions. (abridged)Comment: 14 pages, 8 figures, accepted for publication in A
Geochemical evidence of the seasonality, affinity and pigmenation of Solenopora jurassica
Solenopora jurassica is a fossil calcareous alga that functioned as an important reef-building organism during the Palaeozoic. It is of significant palaeobiological interest due to its distinctive but poorly understood pink and white banding. Though widely accepted as an alga there is still debate over its taxonomic affinity, with recent work arguing that it should be reclassified as a chaetetid sponge. The banding is thought to be seasonal, but there is no conclusive evidence for this. Other recent work has, however demonstrated the presence of a unique organic boron-containing pink/red pigment in the pink bands of S. jurassica. We present new geochemical evidence concerning the seasonality and pigmentation of S. jurassica. Seasonal growth cycles are demonstrated by X-ray radiography, which shows differences in calcite density, and by varying δ13C composition of the bands. Temperature variation in the bands is difficult to constrain accurately due to conflicting patterns arising from Mg/Ca molar ratios and δ18O data. Fluctuating chlorine levels indicate increased salinity in the white bands, when combined with the isotope data this suggests more suggestive of marine conditions during formation of the white band and a greater freshwater component (lower chlorinity) during pink band precipitation (δ18O). Increased photosynthesis is inferred within the pink bands in comparison to the white, based on δ13C. Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) show the presence of tetramethyl pyrrole, protein moieties and carboxylic acid groups, suggestive of the presence of the red algal pigment phycoerythrin. This is consistent with the pink colour of S. jurassica. As phycoerythrin is only known to occur in algae and cyanobacteria, and no biomarker evidence of bacteria or sponges was detected we conclude S. jurassica is most likely an alga. Pigment analysis may be a reliable classification method for fossil algae
Cosmological weak lensing with the HST GEMS survey
We present our cosmic shear analysis of GEMS, one of the largest wide-field
surveys ever undertaken by the Hubble Space Telescope. Imaged with the Advanced
Camera for Surveys (ACS), GEMS spans 795 square arcmin in the Chandra Deep
Field South. We detect weak lensing by large-scale structure in high resolution
F606W GEMS data from ~60 resolved galaxies per square arcminute. We measure the
two-point shear correlation function, the top-hat shear variance and the shear
power spectrum, performing an E/B mode decomposition for each statistic. We
show that we are not limited by systematic errors and use our results to place
joint constraints on the matter density parameter Omega_m and the amplitude of
the matter power spectrum sigma_8. We find sigma_8(Omega_m/0.3)^{0.65}=0.68 +/-
0.13 where the 1sigma error includes both our uncertainty on the median
redshift of the survey and sampling variance.
Removing image and point spread function (PSF) distortions are crucial to all
weak lensing analyses. We therefore include a thorough discussion on the degree
of ACS PSF distortion and anisotropy which we characterise directly from GEMS
data. Consecutively imaged over 20 days, GEMS data also allows us to
investigate PSF instability over time. We find that, even in the relatively
short GEMS observing period, the ACS PSF ellipticity varies at the level of a
few percent which we account for with a semi-time dependent PSF model. Our
correction for the temporal and spatial variability of the PSF is shown to be
successful through a series of diagnostic tests.Comment: 17 pages, 16 figures. Version accepted by MNRA
Evolution of optically faint AGN from COMBO-17 and GEMS
We have mapped the AGN luminosity function and its evolution between z=1 and
z=5 down to apparent magnitudes of . Within the GEMS project we have
analysed HST-ACS images of many AGN in the Extended Chandra Deep Field South,
enabling us to assess the evolution of AGN host galaxy properties with cosmic
time.Comment: to appear in proceedings 'Multiwavelength AGN Surveys', Cozumel 200
Tully-Fisher analysis of the multiple cluster system Abell 901/902
Context. Aims. We derive rotation curves from optical emission lines of 182 disc galaxies (96 in the cluster and 86 in the field) in the region of Abell 901/902 located at z ~ 0.165. We continue the kinematic analysis presented in a previous paper. Here
- …