615 research outputs found
On the Origin of Gravity and the Laws of Newton
Starting from first principles and general assumptions Newton's law of
gravitation is shown to arise naturally and unavoidably in a theory in which
space is emergent through a holographic scenario. Gravity is explained as an
entropic force caused by changes in the information associated with the
positions of material bodies. A relativistic generalization of the presented
arguments directly leads to the Einstein equations. When space is emergent even
Newton's law of inertia needs to be explained. The equivalence principle leads
us to conclude that it is actually this law of inertia whose origin is
entropic.Comment: 29 pages, 6 figure
Comments on gauge-invariance in cosmology
We revisit the gauge issue in cosmological perturbation theory, and highlight
its relation to the notion of covariance in general relativity. We also discuss
the similarities and differences of the covariant approach in perturbation
theory to the Bardeen or metric approach in a non-technical fashion.Comment: 7 pages, 1 figure, revtex4; v3: minor changes, typos corrected,
discussion extended; v4: typos corrected, corresponding to published versio
Kerr-CFT From Black-Hole Thermodynamics
We analyze the near-horizon limit of a general black hole with two commuting
killing vector fields in the limit of zero temperature. We use black hole
thermodynamics methods to relate asymptotic charges of the complete spacetime
to those obtained in the near-horizon limit. We then show that some
diffeomorphisms do alter asymptotic charges of the full spacetime, even though
they are defined in the near horizon limit and, therefore, count black hole
states. We show that these conditions are essentially the same as considered in
the Kerr/CFT corresponcence. From the algebra constructed from these
diffeomorphisms, one can extract its central charge and then obtain the black
hole entropy by use of Cardy's formula.Comment: 19 pages, JHEP3, no figures. V2: References added, small typos fixe
On smoothness of Black Saturns
We prove smoothness of the domain of outer communications (d.o.c.) of the
Black Saturn solutions of Elvang and Figueras. We show that the metric on the
d.o.c. extends smoothly across two disjoint event horizons with topology R x
S^3 and R x S^1 x S^2. We establish stable causality of the d.o.c. when the
Komar angular momentum of the spherical component of the horizon vanishes, and
present numerical evidence for stable causality in general.Comment: 47 pages, 5 figure
Microscopics of Extremal Kerr from Spinning M5 Branes
We show that the spinning magnetic one-brane in minimal five-dimensional
supergravity admits a decoupling limit that interpolates smoothly between a
self-dual null orbifold of AdS_3 \times S^2 and the near-horizon limit of the
extremal Kerr black hole times a circle. We use this interpolating solution to
understand the field theory dual to spinning M5 branes as a deformation of the
Discrete Light Cone Quantized (DLCQ) Maldacena-Stominger-Witten (MSW) CFT. In
particular, the conformal weights of the operators dual to the deformation
around AdS_3 \times S^2 are calculated. We present pieces of evidence showing
that a CFT dual to the four-dimensional extremal Kerr can be obtained from the
deformed MSW CFT.Comment: 5 page
Vanishing of phase coherence in underdoped Bi_2Sr_2CaCu_2O_8+d
Coherent time-domain spectroscopy is used to measure the screening and
dissipation of high-frequency electromagnetic fields in a set of underdoped
Bi_2Sr_2CaCu_2O_8+d thin films. The measurements provide direct evidence for a
phase-fluctuation driven transition from the superconductor to normal state,
with dynamics described well by the Berezinskii-Kosterlitz-Thouless theory of
vortex-pair unbinding.Comment: Nature, Vol. 398, 18 March 1999, pg. 221 4 pages with 4 included
figure
The Ages of Elliptical Galaxies in a Merger Model
The tightness of the observed colour-magnitude and Mg- velocity
dispersion relations for elliptical galaxies has often been cited as an
argument against a picture in which ellipticals form by the merging of spiral
disks. A common view is that merging would mix together stars of disparate ages
and produce a large scatter in these relations. Here I use semi-analytic models
of galaxy formation to derive the distribution of the mean ages, colours and
metallicities of the stars in elliptical galaxies formed by mergers in a flat
CDM universe. It is seen that most of the stars in ellipticals form at
relatively high redshift (z > 1.9) and that the predicted scatter in the
colour-magnitude and Mg_2 - sigma relations falls within observational bounds.
I conclude that the apparent homogeneity in the properties of the stellar
populations of ellipticals is not inconsistent with a merger scenario for the
origin of these systems.Comment: latex file, figures available upon reques
The hidden horizon and black hole unitarity
We motivate through a detailed analysis of the Hawking radiation in a
Schwarzschild background a scheme in accordance with quantum unitarity. In this
scheme the semi-classical approximation of the unitary quantum - horizonless -
black hole S-matrix leads to the conventional description of the Hawking
radiation from a classical black hole endowed with an event horizon. Unitarity
is borne out by the detailed exclusive S-matrix amplitudes. There, the fixing
of generic out-states, in addition to the in-state, yields in asymptotic
Minkowski space-time saddle-point contributions which are dominated by
Planckian metric fluctuations when approaching the Schwarzschild radius. We
argue that these prevent the corresponding macroscopic "exclusive backgrounds"
to develop an event horizon. However, if no out-state is selected, a distinct
saddle-point geometry can be defined, in which Planckian fluctuations are
tamed. Such "inclusive background" presents an event horizon and constitutes a
coarse-grained average over the aforementioned exclusive ones. The classical
event horizon appears as a coarse-grained structure, sustaining the
thermodynamic significance of the Bekenstein-Hawking entropy. This is
reminiscent of the tentative fuzzball description of extremal black holes: the
role of microstates is played here by a complete set of out-states. Although
the computations of unitary amplitudes would require a detailed theory of
quantum gravity, the proposed scheme itself, which appeals to the metric
description of gravity only in the vicinity of stationary points, does not.Comment: 29 pages, 4 figures. Typos corrected. Two footnotes added (footnotes
3 and 5
Black Hole Emission in String Theory and the String Phase of Black Holes
String theory properly describes black-hole evaporation. The quantum string
emission by Black Holes is computed. The black-hole temperature is the Hawking
temperature in the semiclassical quantum field theory (QFT) regime and becomes
the intrinsic string temperature, T_s, in the quantum (last stage) string
regime. The QFT-Hawking temperature T_H is upper bounded by the string
temperature T_S. The black hole emission spectrum is an incomplete gamma
function of (T_H - T_S). For T_H << T_S, it yields the QFT-Hawking emission.
For T_H \to T_S, it shows highly massive string states dominate the emission
and undergo a typical string phase transition to a microscopic `minimal' black
hole of mass M_{\min} or radius r_{\min} (inversely proportional to T_S) and
string temperature T_S. The string back reaction effect (selfconsistent black
hole solution of the semiclassical Einstein equations) is computed. Both, the
QFT and string black hole regimes are well defined and bounded.The string
`minimal' black hole has a life time tau_{min} simeq (k_B c)/(G hbar [T_S]^3).
The semiclassical QFT black hole (of mass M and temperature T_H) and the string
black hole (of mass M_{min} and temperature T_S) are mapped one into another by
a `Dual' transform which links classical/QFT and quantum string regimes.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI:
Phase Transitions in the Early Universe: Theory and Observations. To appear
in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez.
(Kluwer Pub
An upper bound on the Kaon B-parameter and Re(epsilon_K)
New precise data in B physics and theoretical developments in K physics lead
us to reconsider the weak K^0-\bar{K}^0 transition from a large-N_c viewpoint,
N_c being the number of colors. In this framework, we infer an upper limit on
\hat{B}_K and the Kaon indirect CP violation.Comment: 11 pages, 4 figures. V2 : Minor corrections, final version accepted
for publication in JHE
- …