193 research outputs found

    RTVP-1 regulates glioma cell migration and invasion via interaction with N-WASP and hnRNPK

    Get PDF
    Glioblastoma (GBM) are characterized by increased invasion into the surrounding normal brain tissue. RTVP-1 is highly expressed in GBM and regulates the migration and invasion of glioma cells. To further study RTVP-1 effects we performed a pull-down assay using His-tagged RTVP-1 followed by mass spectrometry and found that RTVP-1 was associated with the actin polymerization regulator, N-WASP. This association was further validated by co-immunoprecipitation and FRET analysis. We found that RTVP-1 increased cell spreading, migration and invasion and these effects were at least partly mediated by N-WASP. Another protein which was found by the pull-down assay to interact with RTVP-1 is hnRNPK. This protein has been recently reported to associate with and to inhibit the effect of N-WASP on cell spreading. hnRNPK decreased cell migration, spreading and invasion in glioma cells. Using co-immunoprecipitation we validated the interactions of hnRNPK with N-WASP and RTVP-1 in glioma cells. In addition, we found that overexpression of RTVP-1 decreased the association of N-WASP and hnRNPK. In summary, we report that RTVP-1 regulates glioma cell spreading, migration and invasion and that these effects are mediated via interaction with N-WASP and by interfering with the inhibitory effect of hnRNPK on the function of this protein

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    Dynamics of Membrane Trafficking Downstream of B and T Cell Receptor Engagement: Impact on Immune Synapses

    Get PDF
    The onset of an adaptive immune response requires the activation of T and B lymphocytes by antigen-presenting cells, through a specialized form of intercellular communication, known as the immunological synapse (IS). In B lymphocytes the IS promotes efficient recognition and acquisition of membrane-bound Ags, while in T cells, it modulates the T cell response upon exposure to peptide-major histocompatibility complexes. In this review, we highlight the similarities that determine B and T cell activation, focusing on immune receptor downstream signaling events that lead to synapse formation. We stress the notion that polarization of T and B lymphocytes characterized by global changes in cytoskeleton and membrane trafficking modulates synapse structure and function, thus determining lymphocyte effector functions and fate

    The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells

    Get PDF
    The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response

    HIV-1 Nef Employs Two Distinct Mechanisms to Modulate Lck Subcellular Localization and TCR Induced Actin Remodeling

    Get PDF
    The Nef protein acts as critical factor during HIV pathogenesis by increasing HIV replication in vivo via the modulation of host cell vesicle transport and signal transduction processes. Recent studies suggested that Nef alters formation and function of immunological synapses (IS), thereby modulating exogenous T-cell receptor (TCR) stimulation to balance between partial T cell activation required for HIV-1 spread and prevention of activation induced cell death. Alterations of IS function by Nef include interference with cell spreading and actin polymerization upon TCR engagement, a pronounced intracellular accumulation of the Src kinase Lck and its reduced IS recruitment. Here we use a combination of Nef mutagenesis and pharmacological inhibition to analyze the relative contribution of these effects to Nef mediated alterations of IS organization and function on TCR stimulatory surfaces. Inhibition of actin polymerization and IS recruitment of Lck were governed by identical Nef determinants and correlated well with Nef's association with Pak2 kinase activity. In contrast, Nef mediated Lck endosomal accumulation was separable from these effects, occurred independently of Pak2, required integrity of the microtubule rather than the actin filament system and thus represents a distinct Nef activity. Finally, reduction of TCR signal transmission by Nef was linked to altered actin remodeling and Lck IS recruitment but did not require endosomal Lck rerouting. Thus, Nef affects IS function via multiple independent mechanisms to optimize virus replication in the infected host

    Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    Get PDF
    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses
    corecore