2,627 research outputs found
A Survey of the Czechoslovak Follow-up of Lung Cancer Mortality in Uranium Miners
The major Czechoslovak cohort of uranium miners (S-cohort) is surveyed in terms of diagrams illustrating dependences on calendar year, age, and exposure to radon and radon progeny. An analysis of the dose dependence of lung cancer mortality is performed by nonparametric and, subsequently, by parametric methods. In the first step, two-dimensional isotonic regression is employed to derive the lung cancer mortality rate and the relative excess risk as functions of age attained and of lagged cumulated exposure. In a second step, analytical fits in terms of relative risk models are derived. The treatment is largely analogous to the methods applied by the BEIR IV Committee to other major cohorts of uranium miners. There is a marked dependence of the excess risk on age attained and on time since exposure. A specific characteristic of the Czechoslovak data is the nonlinearity of the dependence of the lung cancer excess risk on the cumulated exposure; exposures on the order of 100 working level months or less appear to be more effective per working level month than larger exposures but, in the absence of an internal control group, this cannot be excluded to be due to confounders such as smoking or environmental exposures. A further notable observation is the association of larger excess risks with longer protraction of the exposures
Radial Velocity Observations and Light Curve Noise Modeling Confirm That Kepler-91b is a Giant Planet Orbiting a Giant Star
Kepler-91b is a rare example of a transiting hot Jupiter around a red giant
star, providing the possibility to study the formation and composition of hot
Jupiters under different conditions compared to main-sequence stars. However,
the planetary nature of Kepler-91b, which was confirmed using phase-curve
variations by Lillo-Box et al., was recently called into question based on a
re-analysis of Kepler data. We have obtained ground-based radial velocity
observations from the Hobby-Eberly Telescope and unambiguously confirm the
planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial
velocity data. The star exhibits temporally correlated noise due to stellar
granulation which we model as a Gaussian Process. We hypothesize that it is
this noise component that led previous studies to suspect Kepler-91b to be a
false positive. Our work confirms the conclusions presented by Lillo-Box et al.
that Kepler-91b is a 0.73+/-0.13 Mjup planet orbiting a red giant star.Comment: Published in Ap
Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond
Understanding the physical mechanisms of the refractive index modulation
induced by femtosecond laser writing is crucial for tailoring the properties of
the resulting optical waveguides. In this work we apply polarized Raman
spectroscopy to study the origin of stress-induced waveguides in diamond,
produced by femtosecond laser writing. The change in the refractive index
induced by the femtosecond laser in the crystal is derived from the measured
stress in the waveguides. The results help to explain the waveguide
polarization sensitive guiding mechanism, as well as providing a technique for
their optimization.Comment: 5 pages, 4 figure
New Shape Invariant Potentials in Supersymmetric Quantum Mechanics
Quantum mechanical potentials satisfying the property of shape invariance are
well known to be algebraically solvable. Using a scaling ansatz for the change
of parameters, we obtain a large class of new shape invariant potentials which
are reflectionless and possess an infinite number of bound states. They can be
viewed as q-deformations of the single soliton solution corresponding to the
Rosen-Morse potential. Explicit expressions for energy eigenvalues,
eigenfunctions and transmission coefficients are given. Included in our
potentials as a special case is the self-similar potential recently discussed
by Shabat and Spiridonov.Comment: 8pages, Te
Shape Invariance and Its Connection to Potential Algebra
Exactly solvable potentials of nonrelativistic quantum mechanics are known to
be shape invariant. For these potentials, eigenvalues and eigenvectors can be
derived using well known methods of supersymmetric quantum mechanics. The
majority of these potentials have also been shown to possess a potential
algebra, and hence are also solvable by group theoretical techniques. In this
paper, for a subset of solvable problems, we establish a connection between the
two methods and show that they are indeed equivalent.Comment: Latex File, 10 pages, One figure available on request. Appeared in
the proceedings of the workshop on "Supersymmetric Quantum Mechanics and
Integrable Models" held at University of Illinois, June 12-14, 1997; Ed. H.
Aratyn et a
Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing
Diamond's nitrogen vacancy (NV) center is an optically active defect with
long spin coherence times, showing great potential for both efficient nanoscale
magnetometry and quantum information processing schemes. Recently, both the
formation of buried 3D optical waveguides and high quality single NVs in
diamond were demonstrated using the versatile femtosecond laser-writing
technique. However, until now, combining these technologies has been an
outstanding challenge. In this work, we fabricate laser written photonic
waveguides in quantum grade diamond which are aligned to within micron
resolution to single laser-written NVs, enabling an integrated platform
providing deterministically positioned waveguide-coupled NVs. This fabrication
technology opens the way towards on-chip optical routing of single photons
between NVs and optically integrated spin-based sensing
Accuracy of Semiclassical Methods for Shape Invariant Potentials
We study the accuracy of several alternative semiclassical methods by
computing analytically the energy levels for many large classes of exactly
solvable shape invariant potentials. For these potentials, the ground state
energies computed via the WKB method typically deviate from the exact results
by about 10%, a recently suggested modification using nonintegral Maslov
indices is substantially better, and the supersymmetric WKB quantization method
gives exact answers for all energy levels.Comment: 7 pages, Latex, and two tables in postscrip
- …