26 research outputs found

    Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study

    Get PDF
    107noNonalcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of metabolic syndrome and may evolve into hepatocellular carcinoma (HCC). Only scanty clinical information is available on HCC in NAFLD. The aim of this multicenter observational prospective study was to assess the clinical features of patients with NAFLD-related HCC (NAFLD-HCC) and to compare them to those of hepatitis C virus (HCV)-related HCC. A total of 756 patients with either NAFLD (145) or HCV-related chronic liver disease (611) were enrolled in secondary care Italian centers. Survival was modeled according to clinical parameters, lead-time bias, and propensity analysis. Compared to HCV, HCC in NAFLD patients had a larger volume, showed more often an infiltrative pattern, and was detected outside specific surveillance. Cirrhosis was present in only about 50% of NAFLD-HCC patients, in contrast to the near totality of HCV-HCC. Regardless of tumor stage, survival was significantly shorter (P = 0.017) in patients with NAFLD-HCC, 25.5 months (95% confidence interval 21.9-29.1), than in those with HCV-HCC, 33.7 months (95% confidence interval 31.9-35.4). To eliminate possible confounders, a propensity score analysis was performed, which showed no more significant difference between the two groups. Additionally, analysis of patients within Milan criteria submitted to curative treatments did not show any difference in survival between NAFLD-HCC and HCV-HCC (respectively, 38.6 versus 41.0 months, P = nonsignificant) Conclusions: NAFLD-HCC is more often detected at a later tumor stage and could arise also in the absence of cirrhosis, but after patient matching, it has a similar survival rate compared to HCV infection; a future challenge will be to identify patients with NAFLD who require more stringent surveillance in order to offer the most timely and effective treatment. (Hepatology 2016;63:827-838)openopenPiscaglia F.; Svegliati-Baroni G.; Barchetti A.; Pecorelli A.; Marinelli S.; Tiribelli C.; Bellentani S.; Bernardi M.; Biselli M.; Caraceni P.; Domenicali M.; Garuti F.; Gramenzi A.; Lenzi B.; Magalotti D.; Cescon M.; Ravaioli M.; Del Poggio P.; Olmi S.; Rapaccini G.L.; Balsamo C.; Di Nolfo M.A.; Vavassori E.; Alberti A.; Benvegnau L.; Gatta A.; Giacomin A.; Vanin V.; Pozzan C.; Maddalo G.; Giampalma E.; Cappelli A.; Golfieri R.; Mosconi C.; Renzulli M.; Roselli P.; Dell'isola S.; Ialungo A.M.; Risso D.; Marenco S.; Sammito G.; Bruzzone L.; Bosco G.; Grieco A.; Pompili M.; Rinninella E.; Siciliano M.; Chiaramonte M.; Guarino M.; Camma C.; Maida M.; Costantino A.; Barcellona M.R.; Schiada L.; Gemini S.; Lanzi A.; Stefanini G.F.; Dall'aglio A.C.; Cappa F.M.; Suzzi A.; Mussetto A.; Treossi O.; Missale G.; Porro E.; Mismas V.; Vivaldi C.; Bolondi L.; Zoli M.; Granito A.; Malagotti D.; Tovoli F.; Trevisani F.; Venerandi L.; Brandi G.; Cucchetti A.; Bugianesi E.; Vanni E.; Mezzabotta L.; Cabibbo G.; Petta S.; Fracanzani A.; Fargion S.; Marra F.; Fani B.; Biasini E.; Sacco R.; Morisco F.; Caporaso N.; Colombo M.; D'ambrosio R.; Croce L.S.; Patti R.; Giannini E.G.; Loria P.; Lonardo A.; Baldelli E.; Miele L.; Farinati F.; Borzio M.; Dionigi E.; Soardo G.; Caturelli E.; Ciccarese F.; Virdone R.; Affronti A.; Foschi F.G.; Borzio F.Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; Bernardi, M.; Biselli, M.; Caraceni, P.; Domenicali, M.; Garuti, F.; Gramenzi, A.; Lenzi, B.; Magalotti, D.; Cescon, M.; Ravaioli, M.; Del Poggio, P.; Olmi, S.; Rapaccini, G. L.; Balsamo, C.; Di Nolfo, M. A.; Vavassori, E.; Alberti, A.; Benvegnau, L.; Gatta, A.; Giacomin, A.; Vanin, V.; Pozzan, C.; Maddalo, G.; Giampalma, E.; Cappelli, A.; Golfieri, R.; Mosconi, C.; Renzulli, M.; Roselli, P.; Dell'Isola, S.; Ialungo, A. M.; Risso, D.; Marenco, S.; Sammito, G.; Bruzzone, L.; Bosco, G.; Grieco, A.; Pompili, M.; Rinninella, E.; Siciliano, M.; Chiaramonte, M.; Guarino, M.; Camma, C.; Maida, M.; Costantino, A.; Barcellona, M. R.; Schiada, L.; Gemini, S.; Lanzi, A.; Stefanini, G. F.; Dall'Aglio, A. C.; Cappa, F. M.; Suzzi, A.; Mussetto, A.; Treossi, O.; Missale, G.; Porro, E.; Mismas, V.; Vivaldi, C.; Bolondi, L.; Zoli, M.; Granito, A.; Malagotti, D.; Tovoli, F.; Trevisani, F.; Venerandi, L.; Brandi, G.; Cucchetti, A.; Bugianesi, E.; Vanni, E.; Mezzabotta, L.; Cabibbo, G.; Petta, S.; Fracanzani, A.; Fargion, S.; Marra, F.; Fani, B.; Biasini, E.; Sacco, R.; Morisco, F.; Caporaso, N.; Colombo, M.; D'Ambrosio, R.; Croce, L. S.; Patti, R.; Giannini, E. G.; Loria, P.; Lonardo, A.; Baldelli, E.; Miele, L.; Farinati, F.; Borzio, M.; Dionigi, E.; Soardo, G.; Caturelli, E.; Ciccarese, F.; Virdone, R.; Affronti, A.; Foschi, F. G.; Borzio, F

    Genome sequencing reveals Zika virus diversity and spread in the Americas

    Get PDF
    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests

    PNPLA3 GG genotype and carotid atherosclerosis in patients with non-alcoholic fatty liver disease.

    No full text
    BACKGROUND AND AIM: To evaluate if the presence of carotid atherosclerosis in patients with NAFLD, could be related to gene variants influencing hepatic fat accumulation and the severity of liver damage. METHODS: We recorded anthropometric, metabolic and histological data(Kleiner score) of 162 consecutive, biopsy-proven Sicilian NAFLD patients. Intima-media thickness(IMT), IMT thickening(IMT>/=1 mm) and carotid plaques(focal thickening of >1.3 mm at the level of common carotid artery) were evaluated using ultrasonography. IL28B rs12979860 C>T, PNPLA3 rs738409 C>G, GCKR rs780094 C>T, LYPLAL1 rs12137855 C>T, and NCAN rs2228603 C>T single nucleotide polymorphisms were also assessed. The results were validated in a cohort of 267 subjects with clinical or histological diagnosis of NAFLD from Northern Italy, 63 of whom had follow-up examinations. RESULTS: Carotid plaques, IMT thickening and mean maximum IMT were similar in the two cohorts, whereas the prevalence of diabetes, obesity, NASH, and PNPLA3 GG polymorphism(21%vs.13%, p = 0.02) were significantly higher in the Sicilian cohort. In this cohort, the prevalence of carotid plaques and IMT thickening was higher in PNPLA3 GG compared to CC/CG genotype(53%vs.32%, p = 0.02; 62%vs.28%, p<0.001, respectively). These associations were confirmed at multivariate analyses (OR2.94;95%C.I. 1.12-7.71, p = 0.02, and OR4.11;95%C.I. 1.69-9.96, p = 0.002, respectively), although have been observed only in patients <50years. Also in the validation cohort, PNPLA3 GG genotype was independently associated with IMT thickening in younger patients only (OR: 6.00,95%C.I. 1.36-29, p = 0.01), and to IMT progression (p = 0.05) in patients with follow-up examinations. CONCLUSION: PNPLA3 GG genotype is associated with higher severity of carotid atherosclerosis in younger patients with NAFLD. Mechanisms underlying this association, and its clinical relevance need further investigations

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    No full text
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions

    Some reflections on neuroscience and civil law

    No full text
    This chapter is about some prospects opened up by neurosciences for the current civil law. Just think about the discovery of the mirror-neurons and the possible use of it in the negotiation (it imposes the protection of self-determination and consensus of the contracting party); or about the consequences deriving from neuro-scientific knowledge for the notion of legal capacity (or actual abilities) of natural persons. This provides a good guess of how valuable the neuro-scientific knowledge could be for the more effective and efficient protection of the human dignity
    corecore