1,882 research outputs found

    Wormholes in spacetimes with cosmological horizons

    Get PDF
    A generalisation of the asymptotic wormhole boundary condition for the case of spacetimes with a cosmological horizon is proposed. In particular, we consider de Sitter spacetime with small cosmological constant. The wave functions selected by this proposal are exponentially damped in WKB approximation when the scale factor is large but still much smaller than the horizon size. In addition, they only include outgoing gravitational modes in the region beyond the horizon. We argue that these wave functions represent quantum wormholes and compute the local effective interactions induced by them in low-energy field theory. These effective interactions differ from those for flat spacetime in terms that explicitly depend on the cosmological constant.Comment: 10 pages, LaTeX 2.O9, no figure

    Entropy bounds in terms of the w parameter

    Full text link
    In a pair of recent articles [PRL 105 (2010) 041302 - arXiv:1005.1132; JHEP 1103 (2011) 056 - arXiv:1012.2867] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, S <= A/2, was that the proportionality constant, 1/2, was weaker than that expected from black hole thermodynamics, 1/4. In the current article we strengthen the previous results by obtaining a bound involving the (suitably averaged) w parameter. Simple causality arguments restrict this averaged parameter to be <= 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.Comment: V1: 14 pages. V2: One reference added. V3: This version accepted for publication in JHE

    Quasi-particle creation by analogue black holes

    Get PDF
    We discuss the issue of quasi-particle production by ``analogue black holes'' with particular attention to the possibility of reproducing Hawking radiation in a laboratory. By constructing simple geometric acoustic models, we obtain a somewhat unexpected result: We show that in order to obtain a stationary and Planckian emission of quasi-particles, it is not necessary to create an ergoregion in the acoustic spacetime (corresponding to a supersonic regime in the flow). It is sufficient to set up a dynamically changing flow either eventually generating an arbitrarily small sonic region v=c, but without any ergoregion, or even just asymptotically, in laboratory time, approaching a sonic regime with sufficient rapidity.Comment: 30 pages, 16 figure

    Analogue model for quantum gravity phenomenology

    Full text link
    So called "analogue models" use condensed matter systems (typically hydrodynamic) to set up an "effective metric" and to model curved-space quantum field theory in a physical system where all the microscopic degrees of freedom are well understood. Known analogue models typically lead to massless minimally coupled scalar fields. We present an extended "analogue space-time" programme by investigating a condensed-matter system - in and beyond the hydrodynamic limit - that is in principle capable of simulating the massive Klein-Gordon equation in curved spacetime. Since many elementary particles have mass, this is an essential step in building realistic analogue models, and an essential first step towards simulating quantum gravity phenomenology. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore our model suggests constraints on quantum gravity phenomenology in terms of the "naturalness problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9 Sep 200

    Simulation of Acoustic Black Hole in a Laval Nozzle

    Full text link
    A numerical simulation of fluid flows in a Laval nozzle is performed to observe formations of acoustic black holes and the classical counterpart to Hawking radiation under a realistic setting of the laboratory experiment. We determined the Hawking temperature of the acoustic black hole from obtained numerical data. Some noteworthy points in analyzing the experimental data are clarified through our numerical simulation.Comment: 26 pages, published versio

    Context-Free Path Querying with Structural Representation of Result

    Full text link
    Graph data model and graph databases are very popular in various areas such as bioinformatics, semantic web, and social networks. One specific problem in the area is a path querying with constraints formulated in terms of formal grammars. The query in this approach is written as grammar, and paths querying is graph parsing with respect to given grammar. There are several solutions to it, but how to provide structural representation of query result which is practical for answer processing and debugging is still an open problem. In this paper we propose a graph parsing technique which allows one to build such representation with respect to given grammar in polynomial time and space for arbitrary context-free grammar and graph. Proposed algorithm is based on generalized LL parsing algorithm, while previous solutions are based mostly on CYK or Earley algorithms, which reduces time complexity in some cases.Comment: Evaluation extende

    Modelling gravity on a hyper-cubic lattice

    Full text link
    We present an elegant and simple dynamical model of symmetric, non-degenerate (n x n) matrices of fixed signature defined on a n-dimensional hyper-cubic lattice with nearest-neighbor interactions. We show how this model is related to General Relativity, and discuss multiple ways in which it can be useful for studying gravity, both classical and quantum. In particular, we show that the dynamics of the model when all matrices are close to the identity corresponds exactly to a finite-difference discretization of weak-field gravity in harmonic gauge. We also show that the action which defines the full dynamics of the model corresponds to the Einstein-Hilbert action to leading order in the lattice spacing, and use this observation to define a lattice analogue of the Ricci scalar and Einstein tensor. Finally, we perform a mean-field analysis of the statistical mechanics of this model.Comment: 5 page

    Propagation in the atmosphere of ultrahigh-energy charmed hadrons

    Full text link
    Charmed mesons may be produced when a primary cosmic ray or the leading hadron in an air shower collide with an atmospheric nucleon. At energies \ge 10^8 GeV their decay length becomes larger than 10 km, which implies that they tend to interact in the air instead of decaying. We study the collisions of long-lived charmed hadrons in the atmosphere. We show that (\Lambda_c,D)-proton diffractive processes and partonic collisions of any q^2 where the charm quark is an spectator have lower inelasticity than (p,\pi)-proton collisions. In particular, we find that a D meson deposits in each interaction just around 55% of the energy deposited by a pion. On the other hand, collisions involving the valence c quark (its annihilation with a sea cbar quark in the target or c-quark exchange in the t channel) may deposit most of D meson energy, but their frequency is low (below 0.1% of inelastic interactions). As a consequence, very energetic charmed hadrons may keep a significant fraction of their initial energy after several hadronic interactions, reaching much deeper in the atmosphere than pions or protons of similar energy.Comment: 13 pages, version to appear in PR

    Sensitivity of Hawking radiation to superluminal dispersion relations

    Get PDF
    We analyze the Hawking radiation process due to collapsing configurations in the presence of superluminal modifications of the dispersion relation. With such superluminal dispersion relations, the horizon effectively becomes a frequency-dependent concept. In particular, at every moment of the collapse, there is a critical frequency above which no horizon is experienced. We show that, as a consequence, the late-time radiation suffers strong modifications, both quantitative and qualitative, compared to the standard Hawking picture. Concretely, we show that the radiation spectrum becomes dependent on the measuring time, on the surface gravities associated with different frequencies, and on the critical frequency. Even if the critical frequency is well above the Planck scale, important modifications still show up.Comment: 14 pages, 7 figures. Extensive paragraph added in conclusions to clarify obtained result
    corecore