6 research outputs found

    The influence of simulator input conditions on the wear of total knee replacements: an experimental and computational study

    Get PDF
    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation

    The effect of insert conformity and material on total knee replacement wear

    Get PDF
    The mean average life is increasing; therefore, there is a need to increase the lifetime of the prostheses. To fulfil this requirement, new prosthetic designs and materials are being introduced. Two of the design parameters that may affect wear of total knee replacements, and hence the expected lifetime, are the insert conformity and material. Computational models have been used extensively for wear prediction and optimisation of artificial knee designs. The objective of the present study was to use a previously validated non-dimensional wear coefficient-based computational wear model to investigate the effect of insert conformity and material on the predicted wear in total knee replacements. Four different inserts (curved, lipped, partial flat and custom flat), with different conformity levels, were tested against the same femoral and under two different kinematic inputs (intermediate and high), with different levels of cross-shear. The insert bearing materials were either conventional or moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE). Wear predictions were validated against the experimental data from Leeds knee simulation tests. The predicted wear rates for the curved insert (most conformed) were more than three times those for the flat insert (least conformed). In addition, the computationally predicted average volumetric wear rates for moderately cross-linked UHMWPE bearings were less than half of their corresponding conventional UHMWPE bearings. Moreover, the wear of the moderately cross-linked UHMWPE was shown to be less dependent on the degree of cross-shear, compared to conventional UHMWPE. These results along with supporting experimental studies provide insight into the design variables, which may reduce wear in knee replacements

    The influence of nominal stress on wear factors of carbon fibreā€“reinforced polyetheretherketone (PEEK-OPTIMA Ā®

    No full text
    Carbon fibreā€“reinforced polyetheretherketone is an attractive alternative to ultra-high-molecular-weight polyethylene in artificial joints, but little has been published on the influence of stress on the wear factor. We know that in ultra-high-molecular-weight polyethylene, the wear factor reduces as the normal stress increases, which is counter-intuitive but very helpful in the case of non-conforming contacts. In this study, carbon fibreā€“reinforced polyetheretherketone (PEEK-OPTIMAĀ® Wear Performance) has been investigated in a pin-on-plate machine under steady loads and under stresses typical of hip and knee joints. At stresses below about 6 MPa, wear factors are between 10 and a 100 times lower than for ultra-high-molecular-weight polyethylene but at higher stresses the wear factors increase substantially
    corecore