7,307 research outputs found

    Central limit approximations for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since there is usually no obvious natural upper limit on the number of individuals in a patch, this leads to systems in which there are countably infinitely many possible types of entity. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove central limit theorems for quite general systems of this kind, together with bounds on the rate of convergence in an appropriately chosen weighted ℓ1\ell_1 norm.Comment: 24 page

    Interacting vector fields in Relativity without Relativity

    Get PDF
    Barbour, Foster and \'{O} Murchadha have recently developed a new framework, called here {\it{the 3-space approach}}, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of 3-dimensional metric--matter configurations. In fact gravity, the universal light cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity -- and more -- without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang--Mills fields minimally coupled to gravity.Comment: Replaced with final version accepted by Classical and Quantum Gravity (14 pages, no figures

    Towards the Unification of Gravity and other Interactions: What has been Missed?

    Full text link
    Faced with the persisting problem of the unification of gravity with other fundamental interactions we investigate the possibility of a new paradigm, according to which the basic space of physics is a multidimensional space C{\cal C} associated with matter configurations. We consider general relativity in C{\cal C}. In spacetime, which is a 4-dimensional subspace of C{\cal C}, we have not only the 4-dimensional gravity, but also other interactions, just as in Kaluza-Klein theories. We then consider a finite dimensional description of extended objects in terms of the center of mass, area, and volume degrees of freedom, which altogether form a 16-dimensional manifold whose tangent space at any point is Clifford algebra Cl(1,3). The latter algebra is very promising for the unification, and it provides description of fermions.Comment: 11 pages; Talk presented at "First Mediterranean Conference on Classical and Quantum Gravity", Kolymbari, Crete, Greece, 14-18 September 200

    A law of large numbers approximation for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for rather general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted ℓ1\ell_1 norm.Comment: revised version in response to referee comments, 34 page

    Hydrographic data from R/V endeavor cruise #90

    Get PDF
    The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W

    The Histology and Histochemistry of Normal Endometrium

    Get PDF
    Abstract Not Provided

    Nuclear and Electron Resonance Studies of Some Solids

    Get PDF
    Abstract Not Provided

    Random Matrices and the Convergence of Partition Function Zeros in Finite Density QCD

    Get PDF
    We apply the Glasgow method for lattice QCD at finite chemical potential to a schematic random matrix model (RMM). In this method the zeros of the partition function are obtained by averaging the coefficients of its expansion in powers of the chemical potential. In this paper we investigate the phase structure by means of Glasgow averaging and demonstrate that the method converges to the correct analytically known result. We conclude that the statistics needed for complete convergence grows exponentially with the size of the system, in our case, the dimension of the Dirac matrix. The use of an unquenched ensemble at Ό=0\mu=0 does not give an improvement over a quenched ensemble. We elucidate the phenomenon of a faster convergence of certain zeros of the partition function. The imprecision affecting the coefficients of the polynomial in the chemical potential can be interpeted as the appearance of a spurious phase. This phase dominates in the regions where the exact partition function is exponentially small, introducing additional phase boundaries, and hiding part of the true ones. The zeros along the surviving parts of the true boundaries remain unaffected.Comment: 17 pages, 14 figures, typos correcte

    A law of large numbers approximation for Markov population processes with countably many types

    Get PDF
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for quite general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted ℓ 1 nor
    • 

    corecore