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Abstract When modelling metapopulation dynamics, the influence of a single patch
on the metapopulation depends on the number of individuals in the patch. Since
the population size has no natural upper limit, this leads to systems in which there
are countably infinitely many possible types of individual. Analogous considerations
apply in the transmission of parasitic diseases. In this paper, we prove a law of large
numbers for quite general systems of this kind, together with a rather sharp bound on
the rate of convergence in an appropriately chosen weighted �1 norm.
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1 Introduction

There are many biological systems that consist of entities that differ in their influence
according to the number of active elements associated with them, and can be divided
into types accordingly. In parasitic diseases [2,7,11–13], the infectivity of a host
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depends on the number of parasites that it carries; in metapopulations, the migration
pressure exerted by a patch is related to the number of its inhabitants [1]; the behaviour
of a cell may depend on the number of copies of a particular gene that it contains ([6],
Chapter 7); and so on. In none of these examples is there a natural upper limit to the
number of associated elements, so that the natural setting for a mathematical model
is one in which there are countably infinitely many possible types of individual. In
addition, transition rates typically increase with the number of associated elements
in the system—for instance, each parasite has an individual death rate, so that the
overall death rate of parasites grows at least as fast as the number of parasites—and
this leads to processes with unbounded transition rates. This paper is concerned with
approximations to density-dependent Markov models of this kind, when the typical
population size N becomes large.

In density-dependent Markov population processes with only finitely many types of
individual, a law of large numbers approximation, in the form of a system of ordinary
differential equations, was established by Kurtz [8], together with a diffusion approx-
imation [9]. In the infinite dimensional case, the law of large numbers was proved for
some specific models [1,2,13], see also [10], using individually tailored methods. A
more general result was then given by Eibeck and Wagner [5]. In Barbour and Luczak
[3], the law of large numbers was strengthened by the addition of an error bound in
�1 that is close to optimal order in N . Their argument makes use of an intermediate
approximation involving an independent particles process, for which the law of large
numbers is relatively easy to analyse. This process is then shown to be sufficiently
close to the interacting process of actual interest, by means of a coupling argument.
However, the generality of the results obtained is limited by the simple structure of
the intermediate process, and the model of Arrigoni [1], for instance, lies outside their
scope.

In this paper, we develop an entirely different approach, which circumvents the
need for an intermediate approximation, enabling a much wider class of models to
be addressed. The setting is that of families of Markov population processes X N :=
(X N (t), t ≥ 0), N ≥ 1, taking values in the countable space X + := {X ∈ Z

Z++ ;∑
m≥0 Xm < ∞}. Each component represents the number of individuals of a partic-

ular type, and there are countably many types possible; however, at any given time,
there are only finitely many individuals in the system. The process evolves as a Markov
process with state-dependent transitions

X → X + J at rate NαJ (N−1 X), X ∈ X+, J ∈ J , (1.1)

where each jump is of bounded influence, in the sense that

J ⊂ {X ∈ Z
Z+;

∑

m≥0

|Xm | ≤ J∗ < ∞}, for some fixed J∗ < ∞, (1.2)

so that the number of individuals affected is uniformly bounded. Density dependence
is reflected in the fact that the arguments of the functions αJ are counts normalised by

the ‘typical size’ N . Writing R := RZ++ , the functions αJ : R → R+ are assumed to
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A law of large numbers approximation 729

satisfy

∑

J∈J
αJ (ξ) < ∞, ξ ∈ R0, (1.3)

where R0 := {ξ ∈ R : ξi = 0 for all but finitely many i}; this assumption implies
that the processes X N are pure jump processes, at least for some non-zero length of
time. To prevent the paths leaving X+, we also assume that Jl ≥ −1 for each l, and
that αJ (ξ) = 0 if ξ l = 0 for any J ∈ J such that J l = −1. Some remarks on the
consequences of allowing transitions J with J l ≤ −2 for some l are made at the end
of Sect. 4.

The law of large numbers is then formally expressed in terms of the system of
deterministic equations

dξ

dt
=

∑

J∈J
JαJ (ξ) =: F0(ξ), (1.4)

to be understood componentwise for those ξ ∈ R such that

∑

J∈J
|J l |αJ (ξ) < ∞, for all l ≥ 0,

thus by assumption including R0. Here, the quantity F0 represents the infinitesimal
average drift of the components of the random process. However, in this generality, it
is not even immediately clear that equations (1.4) have a solution.

In order to make progress, it is assumed that the unbounded components in the
transition rates can be assimilated into a linear part, in the sense that F0 can be written
in the form

F0(ξ) = Aξ + F(ξ), (1.5)

again to be understood componentwise, where A is a constant Z+ ×Z+ matrix. These
equations are then treated as a perturbed linear system ([14], Chapter 6). Under suit-
able assumptions on A, there exists a measure μ on Z+, defining a weighted �1 norm
‖ · ‖μ on R, and a strongly ‖ · ‖μ–continuous semigroup {R(t), t ≥ 0} of transition
matrices having pointwise derivative R′(0) = A. If F is locally ‖ · ‖μ–Lipschitz and
‖x(0)‖μ < ∞, this suggests using the solution x of the integral equation

x(t) = R(t)x(0) +
t∫

0

R(t − s)F(x(s)) ds (1.6)

as an approximation to xN := N−1 X N , instead of solving the deterministic equa-
tions (1.4) directly. We go on to show that the solution X N of the stochastic system
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can be expressed using a formula similar to (1.6), which has an additional stochastic
component in the perturbation:

xN (t) = R(t)xN (0) +
t∫

0

R(t − s)F(xN (s)) ds + m̃ N (t), (1.7)

where

m̃ N (t) :=
t∫

0

R(t − s) dm N (s), (1.8)

and m N is the local martingale given by

m N (t) := xN (t) − xN (0) −
t∫

0

F0(xN (s)) ds. (1.9)

The quantity m N can be expected to be small, at least componentwise, under reason-
able conditions.

To obtain tight control over m̃ N in all components simultaneously, sufficient to
ensure that sup0≤s≤t ‖m̃ N (s)‖μ is small, we derive Chernoff-like bounds on the devi-
ations of the most significant components, with the help of a family of exponen-
tial martingales. The remaining components are treated using some general a priori
bounds on the behaviour of the stochastic system. This allows us to take the differ-
ence between the stochastic and deterministic equations (1.7) and (1.6), after which a
Gronwall argument can be carried through, leading to the desired approximation.

The main result, Theorem 4.7, guarantees an approximation error of order
O(N−1/2√log N ) in the weighted �1 metric ‖ · ‖μ, except on an event of proba-
bility of order O(N−1 log N ). More precisely, for each T > 0, there exist constants
K (1)

T , K (2)
T , K (3)

T such that, for N large enough, if

‖N−1 X N (0) − x(0)‖μ ≤ K (1)
T

√
log N

N
,

then

P

(

sup
0≤t≤T

‖N−1 X N (t) − x(t)‖μ > K (2)
T

√
log N

N

)

≤ K (3)
T

log N

N
. (1.10)

The error bound is sharper, by a factor of log N , than that given in Barbour and
Luczak [3], and the theorem is applicable to a much wider class of models. However,
the method of proof involves moment arguments, which require somewhat stronger
assumptions on the initial state of the system, and, in models such as that of Barbour
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A law of large numbers approximation 731

and Kafetzaki [2], on the choice of infection distributions allowed. The conditions
under which the theorem holds can be divided into three categories: growth condi-
tions on the transition rates, so that the a priori bounds, which have the character of
moment bounds, can be established; conditions on the matrix A, sufficient to limit
the growth of the semigroup R, and (together with the properties of F) to determine
the weights defining the metric in which the approximation is to be carried out; and
conditions on the initial state of the system. The a priori bounds are derived in Sect. 2,
the semigroup analysis is conducted in Sect. 3, and the approximation proper is carried
out in Sect. 4. The paper concludes in Sect. 5 with some examples.

The form (1.8) of the stochastic component m̃ N (t) in (1.7) is very similar to that
of a key element in the analysis of stochastic partial differential equations (see, e.g.,
[4, Sect. 6.6]). The SPDE arguments used for its control are, however, typically con-
ducted in a Hilbert space context. Our setting is quite different in nature, and it does
not seem clear how to translate the SPDE methods into our context.

2 A priori bounds

We begin by imposing further conditions on the transition rates of the process X N ,
sufficient to constrain its paths to bounded subsets of X+ during finite time intervals,
and in particular to ensure that only finitely many jumps can occur in finite time. The
conditions that follow have the flavour of moment conditions on the jump distribu-
tions. Since the index j ∈ Z+ is symbolic in nature, we start by fixing an ν ∈ R, such
that ν( j) reflects in some sense the ‘size’ of j , with most indices being ‘large’:

ν( j) ≥ 1 for all j ≥ 0 and lim
j→∞ ν( j) = ∞. (2.1)

We then define the analogues of higher empirical moments using the quantities νr ∈ R,
defined by νr ( j) := ν( j)r , r ≥ 0, setting

Sr (x) :=
∑

j≥0

νr ( j)x j = xT νr , x ∈ R0, (2.2)

where, for x ∈ R0 and y ∈ R,xT y := ∑
l≥0 xlyl . In particular, for X ∈ X+, S0(X) =

‖X‖1. Note that, because of (2.1), for any r ≥ 1,

#{X ∈ X+ : Sr (X) ≤ K } < ∞ for all K > 0. (2.3)

To formulate the conditions that limit the growth of the empirical moments of X N (t)
with t , we also define

Ur (x) :=
∑

J∈J
αJ (x)J T νr ; Vr (x) :=

∑

J∈J
αJ (x)(J T νr )

2, x ∈ R. (2.4)

The assumptions that we shall need are then as follows.
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732 A. D. Barbour, M. J. Luczak

Assumption 2.1 There exists a ν satisfying (2.1) and r (1)
max, r (2)

max ≥ 1 such that, for
all X ∈ X+,

∑

J∈J
αJ (N−1 X)|J T νr | < ∞, 0 ≤ r ≤ r (1)

max, (2.5)

the case r = 0 following from (1.2) and (1.3); furthermore, for some non-negative
constants krl , the inequalities

U0(x) ≤ k01S0(x) + k04,

U1(x) ≤ k11S1(x) + k14, (2.6)

Ur (x) ≤ {kr1 + kr2S0(x)}Sr (x) + kr4, 2 ≤ r ≤ r (1)
max;

and

V0(x) ≤ k03S1(x) + k05,

Vr (x) ≤ kr3Sp(r)(x) + kr5, 1 ≤ r ≤ r (2)
max,

(2.7)

are satisfied, where 1 ≤ p(r) ≤ r (1)
max for 1 ≤ r ≤ r (2)

max.

The quantities r (1)
max and r (2)

max usually need to be reasonably large, if Assumption 4.2
below is to be satisfied.

Now, for X N as in Sect. 1, we let t X N
n denote the time of its nth jump, with t X N

0 = 0,

and set t X N∞ := limn→∞ t X N
n , possibly infinite. For 0 ≤ t < t X N∞ , we define

S(N )
r (t) := Sr (X N (t)); U (N )

r (t) := Ur (xN (t)); V (N )
r (t) := Vr (xN (t)), (2.8)

once again with xN (t) := N−1 X N (t), and also

τ (N )
r (C) := inf

{
t < t X N∞ : S(N )

r (t) ≥ NC
}

, r ≥ 0, (2.9)

where the infimum of the empty set is taken to be ∞. Our first result shows that
t X N∞ = ∞ a.s., and limits the expectations of S(N )

0 (t) and S(N )
1 (t) for any fixed t .

In what follows, we shall write F (N )
s =σ(X N (u), 0≤u ≤s), so that (F (N )

s : s ≥0)

is the natural filtration of the process X N .

Lemma 2.2 Under Assumptions 2.1, t X N∞ = ∞ a.s. Furthermore, for any t ≥ 0,

E
{

S(N )
0 (t)

}
≤

(
S(N )

0 (0) + Nk04t
)

ek01t ;
E

{
S(N )

1 (t)
}

≤
(

S(N )
1 (0) + Nk14t

)
ek11t .
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A law of large numbers approximation 733

Proof Introducing the formal generator AN associated with (1.1),

AN f (X) := N
∑

J∈J
αJ (N−1 X){ f (X + J ) − f (X)}, X ∈ X+, (2.10)

we note that NUl(x) = AN Sl(Nx). Hence, if we define M (N )
l by

M (N )
l (t) := S(N )

l (t) − S(N )
l (0) − N

t∫

0

U (N )
l (u) du, t ≥ 0, (2.11)

for 0 ≤ l ≤ r (1)
max, it is immediate from (2.3), (2.5) and (2.6) that the process

(M (N )
l (t ∧ τ

(N )
1 (C)), t ≥ 0) is a zero mean F (N )-martingale for each C > 0.

In particular, considering M (N )
1 (t ∧ τ

(N )
1 (C)), it follows in view of (2.6) that

E{S(N )
1 (t ∧ τ

(N )
1 (C))} ≤ S(N )

1 (0) + E

⎧
⎪⎪⎨

⎪⎪⎩

t∧τ
(N )
1 (C)∫

0

{k11S(N )
1 (u) + Nk14} du

⎫
⎪⎪⎬

⎪⎪⎭

≤ S(N )
1 (0) +

t∫

0

(k11E{S(N )
1 (u ∧ τ

(N )
1 (C))} + Nk14) du.

Using Gronwall’s inequality, we deduce that

E
{

S(N )
1 (t ∧ τ

(N )
1 (C))

}
≤

(
S(N )

1 (0) + Nk14t
)

ek11t , (2.12)

uniformly in C > 0, and hence that

P

[

sup
0≤s≤t

S1(X N (s)) ≥ NC

]

≤ C−1(S1(xN (0)) + k14t)ek11t (2.13)

also. Hence sup0≤s≤t S1(X N (s)) < ∞ a.s. for any t, limC→∞ τ
(N )
1 (C) = ∞ a.s.,

and, from (2.3) and (1.3), it thus follows that t X N∞ = ∞ a.s. The bound on E{S(N )
1 (t)}

is now immediate, and that on E{S(N )
0 (t)} follows by applying the same Gronwall

argument to M (N )
0 (t ∧ τ

(N )
1 (C)). �

The next lemma shows that, if any T > 0 is fixed and C is chosen large enough,
then, with high probability, N−1S(N )

0 (t) ≤ C holds for all 0 ≤ t ≤ T .
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734 A. D. Barbour, M. J. Luczak

Lemma 2.3 Assume that Assumptions 2.1 are satisfied, and that S(N )
0 (0) ≤ NC0 and

S(N )
1 (0) ≤ NC1. Then, for any C ≥ 2(C0 + k04T )ek01T , we have

P
[
{τ (N )

0 (C) ≤ T }
]

≤ (C1 ∨ 1)K00/(NC2),

where K00 depends on T and the parameters of the model.

Proof It is immediate from (2.11) and (2.6) that

S(N )
0 (t) = S(N )

0 (0) + N

t∫

0

U (N )
0 (u) du + M (N )

0 (t)

≤ S(N )
0 (0) +

t∫

0

(
k01S(N )

0 (u) + Nk04

)
du + sup

0≤u≤t
M (N )

0 (u). (2.14)

Hence, from Gronwall’s inequality, if S(N )
0 (0) ≤ NC0, then

S(N )
0 (t) ≤

{

N (C0 + k04T ) + sup
0≤u≤t

M (N )
0 (u)

}

ek01t . (2.15)

Now, considering the quadratic variation of M (N )
0 , we have

E

⎧
⎪⎪⎨

⎪⎪⎩

{
M (N )

0

(
t ∧ τ

(N )
1 (C ′)

)}2 − N

t∧τ
(N )
1 (C ′)∫

0

V (N )
0 (u) du

⎫
⎪⎪⎬

⎪⎪⎭

= 0 (2.16)

for any C ′ > 0, from which it follows, much as above, that

E
({

M (N )
0

(
t ∧ τ

(N )
1 (C ′)

)}2
)

≤ E

⎧
⎨

⎩
N

t∫

0

V (N )
0

(
u ∧ τ

(N )
1 (C ′)

)
du

⎫
⎬

⎭

≤
t∫

0

{
k03ES(N )

1

(
u ∧ τ

(N )
1 (C ′)

)
+ Nk05

}
du.

Using (2.12), we thus find that

E
({

M (N )
0

(
t ∧ τ

(N )
1 (C ′)

)}2
)

≤ k03

k11
N (C1 + k14T )

(
ek11t − 1

)
+ Nk05t,

(2.17)
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A law of large numbers approximation 735

uniformly for all C ′. Doob’s maximal inequality applied to M (N )
0 (t ∧ τ

(N )
1 (C ′)) now

allows us to deduce that, for any C ′, a > 0,

P

[

sup
0≤u≤T

M (N )
0

(
u ∧ τ

(N )
1 (C ′)

)
> aN

]

≤ 1

Na2

{
k03

k11
(C1 + k14T )

{
ek11T − 1

}
+ k05T

}

=: C1 K01 + K02

Na2 ,

say, so that, letting C ′ → ∞,

P

[

sup
0≤u≤T

M (N )
0 (u) > aN

]

≤ C1 K01 + K02

Na2

also. Taking a = 1
2 Ce−k01T and putting the result into (2.15), the lemma follows. �

In the next theorem, we control the ‘higher ν-moments’ S(N )
r (t) of X N (t).

Theorem 2.4 Assume that Assumptions 2.1 are satisfied, and that S(N )
1 (0) ≤ NC1

and S(N )
p(1)(0) ≤ NC ′

1. Then, for 2 ≤ r ≤ r (1)
max and for any C > 0, we have

E
{

S(N )
r

(
t ∧ τ

(N )
0 (C)

)}
≤

(
S(N )

r (0) + Nkr4t
)

e(kr1+Ckr2)t , 0 ≤ t ≤ T . (2.18)

Furthermore, if for 1 ≤ r ≤ r (2)
max, S(N )

r (0) ≤ NCr and S(N )
p(r)(0) ≤ NC ′

r , then, for
any γ ≥ 1,

P

[

sup
0≤t≤T

S(N )
r

(
t ∧ τ

(N )
0 (C)

)
≥ Nγ C ′′

rT

]

≤ Kr0γ
−2 N−1, (2.19)

where

C ′′
rT :=

(
Cr + kr4T + √

(C ′
r ∨ 1)

)
e(kr1+Ckr2)T

and Kr0 depends on C, T and the parameters of the model.

Proof Recalling (2.11), use the argument leading to (2.12) with the martingales
M (N )

r (t ∧ τ
(N )
1 (C ′) ∧ τ

(N )
0 (C)), for any C ′ > 0, to deduce that

ES(N )
r

(
t ∧ τ

(N )
1 (C ′) ∧ τ

(N )
0 (C)

)

≤ S(N )
r (0) +

t∫

0

(
{kr1 + Ckr2} E

{
S(N )

r

(
u ∧ τ

(N )
1 (C ′) ∧ τ

(N )
0 (C)

)}
+ Nkr4

)
du,
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736 A. D. Barbour, M. J. Luczak

for 1 ≤ r ≤ r (1)
max, since N−1S(N )

0 (u) ≤ C when u ≤ τ
(N )
0 (C): define k12 = 0.

Gronwall’s inequality now implies that

ES(N )
r

(
t ∧ τ

(N )
1 (C ′) ∧ τ

(N )
0 (C)

)
≤

(
S(N )

r (0) + Nkr4t
)

e(kr1+Ckr2)t , (2.20)

for 1 ≤ r ≤ r (1)
max, and (2.18) follows by Fatou’s lemma, on letting C ′ → ∞.

Now, also from (2.11) and (2.6), we have, for t ≥ 0 and each r ≤ r (1)
max,

S(N )
r

(
t ∧ τ

(N )
0 (C)

)

= S(N )
r (0) + N

t∧τ
(N )
0 (C)∫

0

U (N )
r (u) du + M (N )

r

(
t ∧ τ

(N )
0 (C)

)

≤ S(N )
r (0) +

t∫

0

(
{kr1 + Ckr2} S(N )

r

(
u ∧ τ

(N )
0 (C)

)
+ Nkr4

)
du

+ sup
0≤u≤t

M (N )
r

(
u ∧ τ

(N )
0 (C)

)
.

Hence, from Gronwall’s inequality, for all t ≥ 0 and r ≤ r (1)
max,

S(N )
r

(
t ∧ τ

(N )
0 (C)

)
≤

{

N (Cr + kr4t) + sup
0≤u≤t

M (N )
r

(
u ∧ τ

(N )
0 (C)

)
}

e(kr1+Ckr2)t .

(2.21)

Now, as in (2.16), we have

E

⎧
⎪⎪⎨

⎪⎪⎩

{
M (N )

r

(
t ∧ τ

(N )
1 (C ′) ∧ τ

(N )
0 (C)

)}2 − N

t∧τ
(N )
1 (C ′)∧τ

(N )
0 (C)∫

0

V (N )
r (u) du

⎫
⎪⎪⎬

⎪⎪⎭

= 0,

(2.22)

from which it follows, using (2.7), that, for 1 ≤ r ≤ r (2)
max,

E
({

M (N )
r

(
t ∧ τ

(N )
1 (C ′) ∧ τ

(N )
0 (C)

)}2
)

≤ E

⎧
⎪⎪⎨

⎪⎪⎩
N

t∧τ
(N )
1 (C ′)∧τ

(N )
0 (C))∫

0

V (N )
r (u) du

⎫
⎪⎪⎬

⎪⎪⎭
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A law of large numbers approximation 737

≤
t∫

0

{
kr3ES(N )

p(r)

(
u ∧ τ

(N )
1 (C ′) ∧ τ

(N )
0 (C)

)
+ Nkr5

}
du

≤ N (C ′
r + kp(r),4T )kr3

kp(r),1 + Ckp(r),2
(e(kp(r),1+Ckp(r),2t) − 1) + Nkr5T,

this last by (2.20), since p(r) ≤ r (1)
max for 1 ≤ r ≤ r (2)

max. Using Doob’s inequality, it
follows that, for any a > 0,

P

[

sup
0≤u≤T

M (N )
r

(
u ∧ τ

(N )
0 (C)

)
> aN

]

≤ 1

Na2

{
kr3(C ′

r + kp(r),4T )

kp(r),1 + Ckp(r),2
(e(kp(r),1+Ckp(r),2T ) − 1) + kr5T

}

=: C ′
r Kr1 + Kr2

Na2 .

Taking a = γ
√

(C ′
r ∨ 1) and putting the result into (2.21) gives (2.19), with Kr0 =

(C ′
r Kr1 + Kr2)/(C ′

r ∨ 1). �

Note also that sup0≤t≤T S(N )
r (t) < ∞ a.s. for all 0 ≤ r ≤ r (2)

max, in view of Lemma 2.3
and Theorem 2.4.

In what follows, we shall particularly need to control quantities of the form∑
J∈J αJ (xN (s))d(J, ζ ), where xN := N−1 X N and

d(J, ζ ) :=
∑

j≥0

|J j |ζ( j), (2.23)

for ζ ∈ R chosen such that ζ( j) ≥ 1 grows fast enough with j [see (4.12)]. Defining

τ (N )(a, ζ ) := inf

⎧
⎨

⎩
s :

∑

J∈J
αJ (xN (s))d(J, ζ ) ≥ a

⎫
⎬

⎭
, (2.24)

infinite if there is no such s, we show in the following corollary that, under suitable
assumptions, τ (N )(a, ζ ) is rarely less than T .

Corollary 2.5 Assume that Assumptions 2.1 hold, and that ζ is such that

∑

J∈J
αJ (N−1 X)d(J, ζ ) ≤ {k1 N−1Sr (X) + k2}b (2.25)

for some 1 ≤ r := r(ζ ) ≤ r (2)
max and some b = b(ζ ) ≥ 1. For this value of r , assume

that S(N )
r (0) ≤ NCr and S(N )

p(r)(0) ≤ NC ′
r for some constants Cr and C ′

r . Assume
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738 A. D. Barbour, M. J. Luczak

further that S(N )
0 (0) ≤ NC0, S(N )

1 (0) ≤ NC1 for some constants C0, C1, and define
C := 2(C0 + k04T )ek01T . Then

P[τ (N )(a, ζ ) ≤ T ] ≤ N−1{Kr0γ
−2
a + K00(C1 ∨ 1)C−2},

for any a ≥ {k2 + k1C ′′
rT }b, where γa := (a1/b − k2)/{k1C ′′

rT }, Kr0 and C ′′
rT are as

in Theorem 2.4, and K00 is as in Lemma 2.3.

Proof In view of (2.25), it is enough to bound the probability

P[ sup
0≤t≤T

S(N )
r (t) ≥ N (a1/b − k2)/k1].

However, Lemma 2.3 and Theorem 2.4 together bound this probability by

N−1
{

Kr0γ
−2
a + K00(C1 ∨ 1)C−2

}
,

where γa is as defined above, as long as a1/b − k2 ≥ k1C ′′
rT . �

If (2.25) is satisfied,
∑

J∈J αJ (xN (s))d(J, ζ ) is a.s. bounded on 0 ≤ s ≤ T ,

because S(N )
r (s) is. The corollary shows that the sum is then bounded by {k2+k1C ′′

r,T }b,

except on an event of probability of order O(N−1). Usually, one can choose b = 1.

3 Semigroup properties

We make the following initial assumptions about the matrix A: first, that

Ai j ≥ 0 for all i �= j ≥ 0;
∑

j �=i

A ji < ∞ for all i ≥ 0, (3.1)

and then that, for some μ ∈ RZ++ such that μ(m) ≥ 1 for each m ≥ 0, and for some
w ≥ 0,

AT μ ≤ wμ. (3.2)

We then use μ to define the μ-norm

‖ξ‖μ :=
∑

m≥0

μ(m)|ξm | on Rμ := {ξ ∈ R : ‖ξ‖μ < ∞}. (3.3)

Note that there may be many possible choices for μ. In what follows, it is important
that F be a Lipschitz operator with respect to the μ-norm, and this has to be borne in
mind when choosing μ.

Setting

Qi j := AT
i jμ( j)/μ(i) − wδi j , (3.4)

123



A law of large numbers approximation 739

where δ is the Kronecker delta, we note that Qi j ≥ 0 for i �= j , and that

0 ≤
∑

j �=i

Qi j =
∑

j �=i

AT
i jμ( j)/μ(i) ≤ w − Aii = −Qii ,

using (3.2) for the inequality, so that Qii ≤ 0. Hence Q can be augmented to a con-
servative Q–matrix, in the sense of Markov jump processes, by adding a coffin state
∂ , and setting Qi∂ := −∑

j≥0 Qi j ≥ 0. Let P(·) denote the semigroup of Markov
transition matrices corresponding to the minimal process associated with Q; then, in
particular,

Q = P ′(0) and P ′(t) = Q P(t) for all t ≥ 0 (3.5)

([15], Theorem 3). Set

RT
i j (t) := ewtμ(i)Pi j (t)/μ( j). (3.6)

Theorem 3.1 Let A satisfy Assumptions (3.1) and (3.2). Then, with the above defini-
tions, R is a strongly continuous semigroup on Rμ, and

∑

i≥0

μ(i)Ri j (t) ≤ μ( j)ewt for all j and t. (3.7)

Furthermore, the sums
∑

j≥0 Ri j (t)A jk = (R(t)A)ik are well defined for all i, k, and

A = R′(0) and R′(t) = R(t)A for all t ≥ 0. (3.8)

Proof We note first that, for x ∈ Rμ,

‖R(t)x‖μ ≤
∑

i≥0

μ(i)
∑

j≥0

Ri j (t)|x j | = ewt
∑

i≥0

∑

j≥0

μ( j)Pji (t)|x j |

≤ ewt
∑

j≥0

μ( j)|x j | = ewt‖x‖μ, (3.9)

since P(t) is substochastic on Z+; hence R : Rμ → Rμ. To show strong continuity,
we take x ∈ Rμ, and consider

‖R(t)x−x‖μ =
∑

i≥0

μ(i)

∣
∣
∣
∣
∣
∣

∑

j≥0

Ri j (t)x j −xi

∣
∣
∣
∣
∣
∣
=
∑

i≥0

∣
∣
∣
∣
∣
∣
ewt

∑

j≥0

μ( j)Pji (t)x j −μ(i)xi

∣
∣
∣
∣
∣
∣

≤ (ewt −1)
∑

i≥0

∑

j≥0

μ( j)Pji (t)x j +
∑

i≥0

∑

j �=i

μ( j)Pji (t)x j +
∑

i≥0

μ(i)xi (1−Pii (t))

≤ (ewt − 1)
∑

j≥0

μ( j)x j + 2
∑

i≥0

μ(i)xi (1 − Pii (t)),
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740 A. D. Barbour, M. J. Luczak

from which it follows that limt→0 ‖R(t)x − x‖μ = 0, by dominated convergence,
since limt→0 Pii (t) = 1 for each i ≥ 0.

The inequality (3.7) follows from the definition of R and the fact that P is substo-
chastic on Z+. Then

(
AT RT (t)

)

i j
=

∑

k �=i

Qik
μ(i)

μ(k)
ewt μ(k)

μ( j)
Pkj (t) + (Qii + w)ewt μ(i)

μ( j)
Pi j (t)

= μ(i)

μ( j)

[
(Q P(t))i j + wPi j (t)

]
ewt ,

with (Q P(t))i j = ∑
k≥0 Qik Pkj (t) well defined because P(t) is sub-stochastic and

Q is conservative. Using (3.5), this gives

(AT RT (t))i j = μ(i)

μ( j)

d

dt
[Pi j (t)e

wt ] = d

dt
RT

i j (t),

and this establishes (3.8). �

4 Main approximation

Let X N , N ≥ 1, be a sequence of pure jump Markov processes as in Sect. 1, with
A and F defined as in (1.4) and (1.5), and suppose that F : Rμ → Rμ, with Rμ as
defined in (3.3), for some μ such that Assumption (3.2) holds. Suppose also that F is
locally Lipschitz in the μ-norm: for any z > 0,

sup
x�=y : ‖x‖μ,‖y‖μ≤z

‖F(x) − F(y)‖μ/‖x − y‖μ ≤ K (μ, F; z) < ∞. (4.1)

Then, for x(0) ∈ Rμ and R as in (3.6), the integral equation

x(t) = R(t)x(0) +
t∫

0

R(t − s)F(x(s)) ds (4.2)

has a unique continuous solution x in Rμ on some non-empty time interval [0, tmax),
such that, if tmax < ∞, then ‖x(t)‖μ → ∞ as t → tmax ([14], Theorem 1.4, Chap-
ter 6). Thus, if A were the generator of R, the function x would be a mild solution of the
deterministic equations (1.4). We now wish to show that the process xN := N−1 X N

is close to x. To do so, we need a corresponding representation for X N .
To find such a representation, let W (t), t ≥ 0, be a pure jump path on X+ that has

only finitely many jumps up to time T . Then we can write

W (t) = W (0) +
∑

j : σ j ≤t

�W (σ j ), 0 ≤ t ≤ T, (4.3)
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A law of large numbers approximation 741

where �W (s) := W (s) − W (s−) and σ j , j ≥ 1, denote the times when W has its
jumps. Now let A satisfy (3.1) and (3.2), and let R(·) be the associated semigroup, as
defined in (3.6). Define the path W ∗(t), 0 ≤ t ≤ T , from the equation

W ∗(t) := R(t)W (0) +
∑

j : σ j ≤t

R(t − σ j )� j −
t∫

0

R(t − s)AW (s) ds, (4.4)

where � j := �W (σ j ). Note that the latter integral makes sense, because each of the
sums

∑
j≥0 Ri j (t)A jk is well defined, from Theorem 3.1, and because only finitely

many of the coordinates of W are non-zero.

Lemma 4.1 W ∗(t) = W (t) for all 0 ≤ t ≤ T .

Proof Fix any t , and suppose that W ∗(s) = W (s) for all s ≤ t . This is clearly the
case for t = 0. Let σ(t) > t denote the time of the first jump of W after t . Then, for
any 0 < h < σ(t) − t , using the semigroup property for R and (4.4),

W ∗(t + h) − W ∗(t)
= (R(h) − I )R(t)W (0) +

∑

j : σ j ≤t

(R(h) − I )R(t − σ j )� j

−
t∫

0

(R(h) − I )R(t − s)AW (s) ds −
t+h∫

t

R(t + h − s)AW (t) ds, (4.5)

where, in the last integral, we use the fact that there are no jumps of W between t and
t + h. Thus we have

W ∗(t + h) − W ∗(t)

= (R(h) − I )

⎧
⎨

⎩
R(t)W (0) +

∑

j : σ j ≤t

R(t − σ j )� j −
t∫

0

R(t − s)AW (s) ds

⎫
⎬

⎭

−
t+h∫

t

R(t + h − s)AW (t) ds

= (R(h) − I )W (t) −
t+h∫

t

R(t + h − s)AW (t) ds. (4.6)

But now, for x ∈ X+,

t+h∫

t

R(t + h − s)Ax ds = (R(h) − I )x,
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742 A. D. Barbour, M. J. Luczak

from (3.8), so that W ∗(t + h) = W ∗(t) for all t + h < σ(t), implying that
W ∗(s) = W (s) for all s < σ(t). On the other hand, from (4.4), we have
W ∗(σ (t)) − W ∗(σ (t)−) = �W (σ (t)), so that W ∗(s) = W (s) for all s ≤ σ(t).
Thus we can prove equality over the interval [0, σ1], and then successively over the
intervals [σ j , σ j+1], until [0, T ] is covered. �

Now suppose that W arises as a realization of X N . Then X N has transition rates
such that

MN (t) :=
∑

j : σ j ≤t

�X N (σ j ) −
t∫

0

AX N (s) ds −
t∫

0

N F(xN (s)) ds (4.7)

is a zero mean local martingale. In view of Lemma 4.1, we can use (4.4) to write

X N (t) = R(t)X N (0) + M̃N (t) + N

t∫

0

R(t − s)F(xN (s)) ds, (4.8)

where

M̃N (t) :=
∑

j : σ j ≤t

R(t − σ j )�X N (σ j )

−
t∫

0

R(t − s)AX N (s) ds −
t∫

0

R(t − s)N F(xN (s)) ds. (4.9)

Thus, comparing (4.8) and (4.2), we expect xN and x to be close, for 0 ≤ t ≤ T <

tmax, provided that we can show that supt≤T ‖m̃ N (t)‖μ is small, where m̃ N (t) :=
N−1 M̃N (t). Indeed, if xN (0) and x(0) are close, then

‖xN (t) − x(t)‖μ

≤ ‖R(t)(xN (0) − x(0))‖μ

+
t∫

0

‖R(t − s)[F(xN (s)) − F(x(s))]‖μ ds + ‖m̃ N (t)‖μ

≤ ewt‖xN (0) − x(0)‖μ

+
t∫

0

ew(t−s)K (μ, F; 2T )‖xN (s) − x(s)‖μ ds + ‖m̃ N (t)‖μ, (4.10)

by (3.9), with the stage apparently set for Gronwall’s inequality, assuming that
‖xN (0) − x(0)‖μ and sup0≤t≤T ‖m̃ N (t)‖μ are small enough that then ‖xN (t)‖μ ≤
2T for 0 ≤ t ≤ T , where T := sup0≤t≤T ‖x(t)‖μ.
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A law of large numbers approximation 743

Bounding sup0≤t≤T ‖m̃ N (t)‖μ is, however, not so easy. Since M̃N is not itself a
martingale, we cannot directly apply martingale inequalities to control its fluctuations.
However, since

M̃N (t) =
t∫

0

R(t − s) d MN (s), (4.11)

we can hope to use control over the local martingale MN instead. For this and the
subsequent argument, we introduce some further assumptions.

Assumption 4.2 1. There exists r = rμ ≤ r (2)
max such that sup j≥0{μ( j)/νr ( j)} < ∞.

2. There exists ζ ∈ R, with ζ( j) ≥ 1 for all j , such that (2.25) is satisfied for some
b = b(ζ ) ≥ 1 and r = r(ζ ) such that 1 ≤ r(ζ ) ≤ r (2)

max, and such that

Z :=
∑

k≥0

μ(k)(|Akk | + 1)√
ζ(k)

< ∞. (4.12)

The requirement that ζ satisfies (4.12) as well as satisfying (2.25) for some r ≤ r (2)
max

implies in practice that it must be possible to take r (1)
max and r (2)

max to be quite large in
Assumption 2.1 (see the examples in Sect. 5).

Note that part 1 of Assumption 4.2 implies that lim j→∞{μ( j)/νr ( j)} = 0 for some
r = r̃μ ≤ rμ + 1. We define

ρ(ζ, μ) := max{r(ζ ), p(r(ζ )), r̃μ}, (4.13)

where p(·) is as in Assumptions 2.1. We can now prove the following lemma, which
enables us to control the paths of M̃N by using fluctuation bounds for the martin-
gale MN .

Lemma 4.3 Under Assumption 4.2,

M̃N (t) = MN (t) +
t∫

0

R(t − s)AMN (s) ds.

Proof From (3.8), we have

R(t − s) = I +
t−s∫

0

R(v)A dv.
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Substituting this into (4.11), we obtain

M̃N (t) =
t∫

0

R(t − s) d MN (s)

= MN (t) +
t∫

0

⎧
⎨

⎩

t∫

0

R(v)A1[0,t−s](v) dv

⎫
⎬

⎭
d MN (s)

= MN (t) +
t∫

0

⎧
⎨

⎩

t∫

0

R(v)A1[0,t−s](v) dv

⎫
⎬

⎭
d X N (s)

−
t∫

0

⎧
⎨

⎩

t∫

0

R(v)A1[0,t−s](v) dv

⎫
⎬

⎭
F0(xN (s)) ds.

It remains to change the order of integration in the double integrals, for which we use
Fubini’s theorem.

In the first, the outer integral is almost surely a finite sum, and at each jump time t X N
l

we have d X N (t X N
l ) ∈ J . Hence it is enough that, for each i, m and t,

∑
j≥0 Ri j (t)A jm

is absolutely summable, which follows from Theorem 3.1. Thus we have

t∫

0

⎧
⎨

⎩

t∫

0

R(v)A1[0,t−s](v) dv

⎫
⎬

⎭
d X N (s) =

t∫

0

R(v)A{X N (t − v) − X N (0)} dv.

(4.14)

For the second, the kth component of R(v)AF0(xN (s)) is just

∑

j≥0

Rkj (v)
∑

l≥0

A jl

∑

J∈J
J lαJ (xN (s)). (4.15)

Now, from (3.7), we have 0 ≤ Rkj (v) ≤ μ( j)ewv/μ(k), and

∑

j≥0

μ( j)|A jl | ≤ μ(l)(2|All | + w), (4.16)

because AT μ ≤ wμ. Hence, putting absolute values in the summands in (4.15) yields
at most

ewv

μ(k)

∑

J∈J
αJ (xN (s))

∑

l≥0

|J l |μ(l)(2|All | + w).

Now, in view of (4.12) and since ζ( j) ≥ 1 for all j , there is a constant K < ∞ such that
μ(l)(2|All | + w) ≤ K ζ(l). Furthermore, ζ satisfies (2.25), so that, by Corollary 2.5,
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∑
J∈J αJ (xN (s))

∑
l≥0 |J l |ζ(l) is a.s. uniformly bounded in 0 ≤ s ≤ T . Hence we

can apply Fubini’s theorem, obtaining

t∫

0

⎧
⎨

⎩

t∫

0

R(v)A1[0,t−s](v) dv

⎫
⎬

⎭
F0(xN (s)) ds =

t∫

0

R(v)A

⎧
⎨

⎩

t−v∫

0

F0(xN (s)) ds

⎫
⎬

⎭
dv,

and combining this with (4.14) proves the lemma. �
We now introduce the exponential martingales that we use to bound the fluctuations

of MN . For θ ∈ RZ+ bounded and x ∈ Rμ,

Z N ,θ (t) := eθT xN (t) exp

⎧
⎨

⎩
−

t∫

0

gNθ (xN (s−)) ds

⎫
⎬

⎭
, t ≥ 0,

is a non-negative finite variation local martingale, where

gNθ (ξ) :=
∑

J∈J
NαJ (ξ)

(
eN−1θT J − 1

)
.

For t ≥ 0, we have

log Z N ,θ (t) = θT xN (t) −
t∫

0

gNθ (xN (s−)) ds

= θT m N (t) −
t∫

0

ϕN ,θ (xN (s−), s) ds, (4.17)

where

ϕN ,θ (ξ) :=
∑

J∈J
NαJ (ξ)

(
eN−1θT J − 1 − N−1θT J

)
, (4.18)

and m N (t) := N−1 MN (t). Note also that we can write

ϕN ,θ (ξ) = N

1∫

0

(1 − r)D2vN (ξ, rθ)[θ, θ ] dr, (4.19)

where

vN (ξ, θ ′) :=
∑

J∈J
αJ (ξ)eN−1(θ ′)T J ,
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and D2vN denotes the matrix of second derivatives with respect to the second
argument:

D2vN (ξ, θ ′)[ζ1, ζ2] := N−2
∑

J∈J
αJ (ξ)eN−1(θ ′)T J ζ T

1 J J T ζ2 (4.20)

for any ζ1, ζ2 ∈ Rμ.

Now choose any B := (Bk, k ≥ 0) ∈ R, and define τ̃
(N )
k (B) by

τ̃
(N )
k (B) := inf

⎧
⎨

⎩
t ≥ 0 :

∑

J :Jk �=0

αJ (xN (t−)) > Bk

⎫
⎬

⎭
.

Our exponential bound is as follows.

Lemma 4.4 For any k ≥ 0,

P

⎡

⎣ sup
0≤t≤T ∧τ̃

(N )
k (B)

|mk
N (t)| ≥ δ

⎤

⎦ ≤ 2 exp(−δ2 N/2Bk K∗T ),

for all 0 < δ ≤ Bk K∗T , where K∗ := J 2∗ eJ∗ , and J∗ is as in (1.2).

Proof Take θ = e(k)β, for β to be chosen later. We shall argue by stopping the local
martingale Z N ,θ at time σ (N )(k, δ), where

σ (N )(k, δ) := T ∧ τ̃
(N )
k (B) ∧ inf{t : mk

N (t) ≥ δ}.

Note that eN−1θT J ≤ eJ∗ , so long as |β| ≤ N , so that

D2vN (ξ, rθ)[θ, θ ] ≤ N−2

⎛

⎝
∑

J :Jk �=0

αJ (ξ)

⎞

⎠β2 K∗.

Thus, from (4.19), we have

ϕN ,θ (xN (u−)) ≤ 1

2
N−1 Bkβ

2 K∗, u ≤ τ̃
(N )
k (B),

and hence, on the event that σ (N )(k, δ) = inf{t : mk
N (t) ≥ δ} ≤ (T ∧ τ̃

(N )
k (B)), we

have

Z N ,θ (σ (k, δ)) ≥ exp

{

βδ − 1

2
N−1 Bkβ

2 K∗T

}

.
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But since Z N ,θ (0) = 1, it now follows from the optional stopping theorem and Fatou’s
lemma that

1 ≥ E{Z N ,θ (σ
(N )(k, δ))}

≥ P

⎡

⎣ sup
0≤t≤T ∧τ̃

(N )
k (B)

mk
N (t) ≥ δ

⎤

⎦ exp

{

βδ − 1

2
N−1 Bkβ

2 K∗T

}

.

We can choose β = δN/Bk K∗T , as long as δ/Bk K∗T ≤ 1, obtaining

P

⎛

⎝ sup
0≤t≤T ∧τ̃

(N )
k (B)

mk
N (t) ≥ δ

⎞

⎠ ≤ exp(−δ2 N/2Bk K∗T ).

Repeating with

σ̃ (N )(k, δ) := T ∧ τ̃
(N )
k (B) ∧ inf{t : − mk

N (t) ≥ δ},
and choosing β = δN/Bk K∗T , gives the lemma. �

The preceding lemma gives a bound for each individual component of MN . We
need first to translate this into a statement for all components simultaneously. For ζ

as in Assumption 4.2, we start by writing

Z (1)∗ := max
k≥1

k−1#{m : ζ(m) ≤ k}; Z (2)∗ := sup
k≥0

μ(k)(|Akk | + 1)√
ζ(k)

. (4.21)

Z (2)∗ is clearly finite, because of Assumption 4.2, and the same is true for Z (1)∗ also,
since Z of Assumption 4.2 is at least #{m : ζ(m) ≤ k}/√k, for each k. Then, using
the definition (2.24) of τ (N )(a, ζ ), note that, for every k,

∑

J : J k �=0

αJ (xN (t))h(k) ≤
∑

J : J k �=0

αJ (xN (t))h(k)d(J, ζ )

|J k |ζ(k)
≤ ah(k)

ζ(k)
, (4.22)

for any t < τ(N )(a, ζ ) and any h ∈ R, and that, for any K ⊆ Z+,

∑

k∈K

∑

J : J k �=0

αJ (xN (t))h(k) ≤
∑

k∈K

∑

J : J k �=0

αJ (xN (t))h(k)d(J, ζ )

|J k |ζ(k)

≤ a

mink∈K(ζ(k)/h(k))
. (4.23)

From (4.22) with h(k) = 1 for all k, if we choose B := (a/ζ(k), k ≥ 0), then
τ (N )(a, ζ ) ≤ τ̃

(N )
k (B) for all k. For this choice of B, we can take

δ2
k := δ2

k (a) := 4aK∗T log N

Nζ(k)
= 4Bk K∗T log N

N
(4.24)
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748 A. D. Barbour, M. J. Luczak

in Lemma 4.4 for k ∈ κN (a), where

κN (a) :=
{

k : ζ(k) ≤ 1

4
aK∗T N/ log N

}

= {k : Bk ≥ 4 log N/K∗T N } , (4.25)

since then δk(a) ≤ Bk K∗T . Note that then, from (4.12),

∑

k∈κN (a)

μ(k)δk(a) ≤ 2Z
√

aK∗T N−1 log N , (4.26)

with Z as defined in Assumption 4.2, and that

|κN (a)| ≤ 1

4
aZ (1)∗ K∗T N/ log N . (4.27)

Lemma 4.5 If Assumptions 4.2 are satisfied, taking δk(a) and κN (a) as defined in
(4.24) and (4.25), and for any η ∈ R, we have

1. P

⎡

⎣
⋃

k∈κN (a)

{

sup
0≤t≤T ∧τ (N )(a,ζ )

|m N (t)| ≥ δk(a)

}⎤

⎦ ≤ aZ (1)∗ K∗T

2N log N
;

2. P

⎡

⎣
∑

k /∈κN (a)

Xk
N (t) = 0 for all 0 ≤ t ≤ T ∧ τ (N )(a, ζ )

⎤

⎦ ≥ 1 − 4 log N

K∗N
;

3. sup
0≤t≤T ∧τ (N )(a,ζ )

⎧
⎨

⎩

∑

k /∈κN (a)

η(k)|Fk(xN (t))|
⎫
⎬

⎭
≤ a J∗

mink /∈κN (a)(ζ(k)/η(k))
.

Proof For part 1, use Lemma 4.4 together with (4.24) and (4.27) to give the bound.
For part 2, the total rate of jumps into coordinates with indices k /∈ κN (a) is

∑

k /∈κN (a)

∑

J : J k �=0

αJ (xN (t)) ≤ a

mink /∈κN (a) ζ(k)
,

if t ≤ τ (N )(a, ζ ), using (4.23) with K = (κN (a))c, which, combined with (4.25),
proves the claim. For the final part, if t ≤ τ (N )(a, ζ ),

∑

k /∈κN (a)

η(k)|Fk(xN (t))| ≤
∑

k /∈κN (a)

η(k)
∑

J : J k �=0

αJ (xN (t))J∗,

and the inequality follows once more from (4.23). �
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Let B(1)
N (a) and B(2)

N (a) denote the events

B(1)
N (a) :=

⎧
⎨

⎩

∑

k /∈κN (a)

Xk
N (t) = 0 for all 0 ≤ t ≤ T ∧ τ (N )(a, ζ )

⎫
⎬

⎭
;

B(2)
N (a) :=

⎛

⎝
⋂

k∈κN (a)

{

sup
0≤t≤T ∧τ (N )(a,ζ )

|m N (t)| ≤ δk(a)

}⎞

⎠,

(4.28)

and set BN (a) := B(1)
N (a) ∩ B(2)

N (a). Then, by Lemma 4.5, we deduce that

P[BN (a)c] ≤ aZ (1)∗ K∗T

2N log N
+ 4 log N

K∗N
, (4.29)

of order O(N−1 log N ) for each fixed a. Thus we have all the components of MN

simultaneously controlled, except on a set of small probability. We now translate this
into the desired assertion about the fluctuations of m̃ N .

Lemma 4.6 If Assumptions 4.2 are satisfied, then, on the event BN (a),

sup
0≤t≤T ∧τ (N )(a,ζ )

‖m̃ N (t)‖μ ≤ √
a K4.6

√
log N

N
,

where the constant K4.6 depends on T and the parameters of the process.

Proof From Lemma 4.3, it follows that

sup
0≤t≤T ∧τ (N )(a,ζ )

‖m̃ N (t)‖μ

≤ sup
0≤t≤T ∧τ (N )(a,ζ )

‖m N (t)‖μ + sup
0≤t≤T ∧τ (N )(a,ζ )

t∫

0

‖R(t − s)Am N (s)‖μ ds.

(4.30)

For the first term, on BN (a) and for 0 ≤ t ≤ T ∧ τ (N )(a, ζ ), we have

‖m N (t)‖μ ≤
∑

k∈κN (a)

μ(k)δk(a) +
t∫

0

∑

k /∈κN (a)

μ(k)|Fk(xN (u))| du.

The first sum is bounded using (4.26) by 2Z
√

aK∗T N−1/2√log N , the second, from
Lemma 4.5 and (4.25), by

T a J∗
mink /∈κN (a)(ζ(k)/μ(k))

≤ Z (2)∗ 2J∗

√
T a

K∗

√
log N

N
.
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750 A. D. Barbour, M. J. Luczak

For the second term in (4.30), from (3.7) and (4.16), we note that

‖R(t − s)Am N (s)‖μ ≤
∑

k≥0

μ(k)
∑

l≥0

Rkl(t − s)
∑

r≥0

|Alr ||mr
N (s)|

≤ ew(t−s)
∑

l≥0

μ(l)
∑

r≥0

|Alr ||mr
N (s)|

≤ ew(t−s)
∑

r≥0

μ(r){2|Arr | + w}|mr
N (s)|.

On BN (a) and for 0 ≤ s ≤ T ∧ τ (N )(a, ζ ), from (4.12), the sum for r ∈ κN (a) is
bounded using

∑

r∈κN (a)

μ(r){2|Arr | + w}|mr
N (s)|

≤
∑

r∈κN (a)

μ(r){2|Arr | + w}δr (a)

≤
∑

r∈κN (a)

μ(r){2|Arr | + w}
√

4aK∗T log N

Nζ(r)

≤ (2 ∨ w)Z
√

4aK∗T

√
log N

N
.

The remaining sum is then bounded by Lemma 4.5, on the set BN (a) and for 0 ≤ s ≤
T ∧ τ (N )(a, ζ ), giving at most

∑

r /∈κN (a)

μ(r){2|Arr | + w}|mr
N (s)|

≤
∑

r /∈κN (a)

μ(r){2|Arr | + w}
s∫

0

|Fr (xN (t))| dt

≤ (2 ∨ w)sa J∗
mink /∈κN (a)(ζ(k)/μ(k){|Akk | + 1})

≤ (2 ∨ w)Z (2)∗ 2J∗

√
T a

K∗

√
log N

N
.

Integrating, it follows that

sup
0≤t≤T ∧τ (N )(a,ζ )

t∫

0

‖R(t − s)Am N (s)‖μ ds

≤ (2T ∨ 1)ewT

{
√

4aK∗T Z + Z (2)∗ J2J∗

√
T a

K∗

} √
log N

N
,

and the lemma follows. �
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A law of large numbers approximation 751

This has now established the control on sup0≤t≤T ‖m̃ N (t)‖μ that we need, in order
to translate (4.10) into a proof of the main theorem.

Theorem 4.7 Suppose that (1.2), (1.3), (3.1), (3.2) and (4.1) are all satisfied, and
that Assumptions 2.1 and 4.2 hold. Recalling the definition (4.13) of ρ(ζ, μ), for ζ as
given in Assumption 4.2, suppose that S(N )

ρ(ζ,μ)(0) ≤ NC∗ for some C∗ < ∞.
Let x denote the solution to (4.2) with initial condition x(0) satisfying

Sρ(ζ,μ)(x(0)) < ∞. Then tmax = ∞.
Fix any T , and define T := sup0≤t≤T ‖x(t)‖μ. If ‖xN (0) − x(0)‖μ ≤

1
2T e−(w+k∗)T , where k∗ := ewT K (μ, F; 2T ), then there exist constants c1, c2
depending on C∗, T and the parameters of the process, such that for all N large
enough

P

(

sup
0≤t≤T

‖xN (t) − x(t)‖μ >

(

ewT ‖xN (0) − x(0)‖μ + c1

√
log N

N

)

ek∗T

)

≤ c2 log N

N
. (4.31)

Proof As S(N )
ρ(ζ,μ)(0) ≤ NC∗, it follows also that S(N )

r (0) ≤ NC∗ for all 0 ≤ r ≤
ρ(ζ, μ). Fix any T < tmax, take C := 2(C∗ + k04T )ek01T , and observe that, for
r ≤ ρ(ζ, μ) ∧ r (2)

max, and such that p(r) ≤ ρ(ζ, μ), we can take

C ′′
rT ≤ C̃rT := {2(C∗ ∨ 1) + kr4T }e(kr1+Ckr2)T , (4.32)

in Theorem 2.4, since we can take C∗ to bound Cr and C ′
r . In particular, r = r(ζ ) as

defined in Assumption 4.2 satisfies both the conditions on r for (4.32) to hold. Then,
taking a := {k2 + k1C̃r(ζ )T }b(ζ ) in Corollary 2.5, it follows that for some constant
c3 > 0, on the event BN (a),

P[τ (N )(a, ζ ) ≤ T ] ≤ c3 N−1.

Then, from (4.29), for some constant c4, P[BN (a)c] ≤ c4 N−1 log N . Here, the con-
stants c3, c4 depend on C∗, T and the parameters of the process.

We now use Lemma 4.6 to bound the martingale term in (4.10). It follows that, on
the event BN (a) ∩ {τ (N )(a, ζ ) > T } and on the event that ‖xN (s) − x(s)‖μ ≤ T

for all 0 ≤ s ≤ t ,

‖xN (t) − x(t)‖μ ≤
(

ewT ‖xN (0) − x(0)‖μ + √
a K4.6

√
log N

N

)

+ k∗
t∫

0

‖xN (s) − x(s)‖μ ds,
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752 A. D. Barbour, M. J. Luczak

where k∗ := ewT K (μ, F; 2T ). Then from Gronwall’s inequality, on the event
BN (a) ∩ {τ (N )(a, ζ ) > T },

‖xN (t) − x(t)‖μ ≤
(

ewT ‖xN (0) − x(0)‖μ + √
a K4.6

√
log N

N

)

ek∗t , (4.33)

for all 0 ≤ t ≤ T , provided that

(

ewT ‖xN (0) − x(0)‖μ + √
a K4.6

√
log N

N

)

≤ T e−k∗T .

This is true for all N sufficiently large, if ‖xN (0) − x(0)‖μ ≤ 1
2T e−(w+k∗)T ,

which we have assumed. We have thus proved (4.31), since, as shown above,
P(BN (a)c ∪ {τ (N )(a, ζ ) > T }c) = O(N−1 log N ).

We now use this to show that in fact tmax = ∞. For x(0) as above, we can
take x

j
N (0) := N−1�Nx j (0)� ≤ x j (0), so that S(N )

ρ(ζ,μ)(0) ≤ NC∗ for C∗ :=
Sρ(ζ,μ)(x(0)) < ∞. Then, by (4.13), lim j→∞{μ( j)/νρ(ζ,μ)( j)} = 0, so it fol-
lows easily using bounded convergence that ‖xN (0) − x(0)‖μ → 0 as N → ∞.
Hence, for any T < tmax, it follows from (4.31) that ‖xN (t) − x(t)‖μ →D 0 as
N → ∞, for t ≤ T , with uniform bounds over the interval, where ‘→D’ denotes
convergence in distribution. Also, by Assumption 4.2, there is a constant c5 such that
‖xN (t)‖μ ≤ c5 N−1S(N )

rμ
(t) for each t , where rμ ≤ r (2)

max and rμ ≤ ρ(ζ, μ). Hence,
using Lemma 2.3 and Theorem 2.4, sup0≤t≤2T ‖xN (t)‖μ remains bounded in prob-
ability as N → ∞. Hence it is impossible that ‖x(t)‖μ → ∞ as T → tmax < ∞,
implying that in fact tmax = ∞ for such x(0). �
Remark The dependence on the initial conditions is considerably complicated by the
way the constant C appears in the exponent, for instance in the expression for C̃rT in
the proof of Theorem 4.7. However, if kr2 in Assumptions 2.1 can be chosen to be zero,
as for instance in the examples below, the dependence simplifies correspondingly.

There are biologically plausible models in which the restriction to J l ≥ −1 is
irksome. In populations in which members of a given type l can fight one another, a
natural possibility is to have a transition J = −2e(l) at a rate proportional to Xl(Xl−1),
which translates to αJ = α

(N )
J = γxl(xl − N−1), a function depending on N . Replac-

ing this with αJ = γ (xl)2 removes the N -dependence, but yields a process that can
jump to negative values of Xl . For this reason, it is useful to be able to allow the
transition rates αJ to depend on N .

Since the arguments in this paper are not limiting arguments for N → ∞, it
does not require many changes to derive the corresponding results. Quantities such as
A, F, Ur (x) and Vr (x) now depend on N ; however, Theorem 4.7 continues to hold
with constants c1 and c2 that do not depend on N , provided that μ,w, ν, the klm

from Assumption 2.1 and ζ from Assumption 4.2 can be chosen to be independent
of N , and that the quantities Z (l)∗ from (4.21) can be bounded uniformly in N . On
the other hand, the solution x = x(N ) of (4.2) that acts as approximation to xN in
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A law of large numbers approximation 753

Theorem 4.7 now itself depends on N , through R = R(N ) and F = F (N ). If A (and
hence R) can be taken to be independent of N , and limN→∞ ‖F (N ) − F‖μ = 0 for
some fixed μ–Lipschitz function F , a Gronwall argument can be used to derive a
bound for the difference between x(N ) and the (fixed) solution x to equation (4.2)
with N -independent R and F . If A has to depend on N , the situation is more delicate.

5 Examples

We begin with some general remarks, to show that the assumptions are satisfied in many
practical contexts. We then discuss two particular examples, those of Kretzschmar [7]
and of Arrigoni [1], that fitted poorly or not at all into the general setting of Barbour
and Luczak [3], though the other systems referred to in Sect. 1 could also be treated
similarly. In both of our chosen examples, the index j represents a number of individ-
uals—parasites in a host in the first, animals in a patch in the second—and we shall
for now use the former terminology for the preliminary, general discussion.

Transitions that can typically be envisaged are: births of a few parasites, which may
occur either in the same host, or in another, if infection is being represented; births and
immigration of hosts, with or without parasites; migration of parasites between hosts;
deaths of parasites; deaths of hosts; and treatment of hosts, leading to the deaths of
many of the host’s parasites. For births of parasites, there is a transition X → X + J ,
where J takes the form

Jl = 1; Jm = −1; J j = 0, j �= l, m, (5.1)

indicating that one m-host has become an l-host. For births of parasites within a host,
a transition rate of the form bl−mm Xm could be envisaged, with l > m, the interpreta-
tion being that there are Xm hosts with parasite burden m, each of which gives birth to
s offspring at rate bs , for some small values of s. For infection of an m-host, a possible
transition rate would be of the form

Xm

∑

j≥0

N−1 X jλp j,l−m,

since an m-host comes into contact with j-hosts at a rate proportional to their density
in the host population, and p jr represents the probability of a j-host transferring r
parasites to the infected host during the contact. The probability distributions p j · can
be expected to be stochastically increasing in j . Deaths of parasites also give rise to
transitions of the form (5.1), but now with l < m, the simplest form of rate being just
dm Xm for l = m − 1, though d = dm could also be chosen to increase with parasite
burden. Treatment of a host would lead to values of l much smaller than m, and a
rate of the form κ Xm for the transition with l = 0 would represent fully successful
treatment of randomly chosen individuals. Births and deaths of hosts and immigration
all lead to transitions of the form

Jl = ±1; J j = 0, j �= l. (5.2)
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754 A. D. Barbour, M. J. Luczak

For deaths, Jl = −1, and a typical rate would be d ′ Xl . For births, Jl = 1, and a
possible rate would be

∑
j≥0 X j b′

jl (with l = 0 only, if new-born individuals are
free of parasites). For immigration, constant rates λl could be supposed. Finally, for
migration of individual parasites between hosts, transitions are of the form

Jl = Jm = −1; Jl+1 = 1; Jm−1 = 1; J j = 0, j �= l, m, l + 1, m − 1,

(5.3)

a possible rate being γ m Xm N−1 Xl .
For all the above transitions, we can take J∗ = 2 in (1.2), and (1.3) is satisfied in

biologically sensible models. (3.1) and (3.2) depend on the way in which the matrix
A can be defined, which is more model specific; in practice, (3.1) is very simple to
check. The choice of μ in (3.2) is influenced by the need to have (4.1) satisfied. For
Assumptions 2.1, a possible choice of ν is to take ν( j) = ( j +1) for each j ≥ 0, with
S1(X) then representing the number of hosts plus the number of parasites. Satisfying
(2.5) is then easy for transitions only involving the movement of a single parasite,
but in general requires assumptions as to the existence of the r th moments of the dis-
tributions of the numbers of parasites introduced at birth, immigration and infection
events. For (2.6), in which transitions involving a net reduction in the total number of
parasites and hosts can be disregarded, the parasite birth events are those in which the
rates typically have a factor m Xm for transitions with Jm = −1, with m in principle
unbounded. However, at such events, an m-individual changes to an m + s individual,
with the number s of offspring of the parasite being typically small, so that the value
of J T νr associated with this rate has magnitude mr−1; the product m Xm mr−1, when
summed over m, then yields a contribution of magnitude Sr (X), which is allowable
in (2.6). Similar considerations show that the terms N−1S0(X)Sr (X) accommodate
the migration rates suggested above. Finally, in order to have Assumptions 4.2 sat-
isfied, it is in practice necessary that Assumptions 2.1 are satisfied for large values
of r , thereby imposing restrictions on the distributions of the numbers of parasites
introduced at birth, immigration and infection events, as above.

5.1 Kretzschmar’s model

Kretzschmar [7] introduced a model of a parasitic infection, in which the transitions
from state X are as follows:

J = e(i−1) − e(i) at rate Niμxi , i ≥ 1;
J = −e(i) at rate N (κ + iα)xi , i ≥ 0;
J = e(0) at rate Nβ

∑
i≥0 xiθ i ;

J = e(i+1) − e(i) at rate Nλxiϕ(x), i ≥ 0,

where x := N−1 X, ϕ(x) := ‖x‖11{c + ‖x‖1}−1 with c > 0, and ‖x‖11 :=∑
j≥1 j |x| j ; here, 0 ≤ θ ≤ 1, and θ i denotes its i th power (our θ corresponds to

the constant ξ in [7]). Both (1.2) and (1.3) are obviously satisfied. For Assumptions
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A law of large numbers approximation 755

(3.1), (3.2) and (4.1), we note that equation corresponding to (1.5) has

Aii = −{κ + i(α + μ)}; AT
i,i−1 = iμ and AT

i0 = βθ i , i ≥ 2;
A11 = −{κ + α + μ}; AT

10 = μ + βθ;
A00 = −κ + β, i ≥ 1,

with all other elements of the matrix equal to zero, and

Fi (x) = λ(xi−1 − xi )ϕ(x), i ≥ 1; F0(x) = −λx0ϕ(x).

Hence Assumption (3.1) is immediate, and Assumption (3.2) holds for μ( j)=( j+1)s ,
for any s ≥ 0, with w = (β − κ)+. For the choice μ( j) = j + 1, F maps ele-
ments of Rμ to Rμ, and is also locally Lipschitz in the μ-norm, with K (μ, F;) =
c−2λ(2c + ).

For Assumptions 2.1, choose ν = μ; then (2.5) is a finite sum for each r ≥ 0.
Turning to (2.6), it is immediate that U0(x) ≤ βS0(x). Then, for r ≥ 1,

∑

i≥0

λϕ(N−1 X)Xi {(i + 2)r − (i + 1)r } ≤ λ
S1(X)

S0(X)

∑

i≥0

r Xi (i + 2)r−1

≤ r2r−1λSr (X),

since, by Jensen’s inequality, S1(X)Sr−1(X) ≤ S0(X)Sr (X). Hence we can take
kr2 = kr4 = 0 and kr1 = β + r2r−1λ in (2.6), for any r ≥ 1, so that r (1)

max = ∞.
Finally, for (2.7),

V0(x) ≤ (κ + β)S0(x) + αS1(x),

so that k03 = κ + β + α and k05 = 0, and

Vr (x) ≤ r2(κS2r (x) + αS2r+1(x) + μS2r−1(x) + 22(r−1)λS2r−1(x)) + βS0(x),

so that we can take p(r) = 2r + 1, kr3 = β + r2{κ + α + μ + 22(r−1)λ}, and kr5 = 0
for any r ≥ 1, and so r (2)

max = ∞. In Assumptions 4.2, we can clearly take rμ = 1 and
ζ(k) = (k + 1)7, giving r(ζ ) = 8, b(ζ ) = 1 and ρ(ζ, μ) = 17.

5.2 Arrigoni’s model

In the metapopulation model of Arrigoni [1], the transitions from state X are as follows:

J = e(i−1) − e(i) at rate Nixi (di + γ (1 − ρ)), i ≥ 2;
J = e(0) − e(1) at rate Nx1(d1 + γ (1 − ρ) + κ);
J = e(i+1) − e(i) at rate Nibix

i , i ≥ 1;
J = e(0) − e(i) at rate Nxiκ, i ≥ 2;
J = e(k+1) − e(k) + e(i−1) − e(i) at rate Nixixkργ, k ≥ 0, i ≥ 1;
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as before, x := N−1 X . Here, the total number N = ∑
j≥0 X j = S0(X) of patches

remains constant throughout, and the number of animals in any one patch changes by at
most one at each transition; in the final (migration) transition, however, the numbers in
two patches change simultaneously. In the above transitions, γ, ρ, κ are non-negative,
and (di ), (bi ) are sequences of non-negative numbers.

Once again, both (1.2) and (1.3) are obviously satisfied. The equation corresponding
to (1.4) can now be expressed by taking

Aii = −{κ + i(bi + di + γ )}; AT
i,i−1 = i(di + γ ); AT

i,i+1 = ibi , i ≥ 1;
A00 = −κ,

with all other elements of A equal to zero, and

Fi (x) = ργ ‖x‖11(x
i−1 − xi ), i ≥ 1; F0(x) = −ργx0‖x‖11 + κ,

where we have used the fact that N−1 ∑
j≥0 X j = 1. Hence Assumption (3.1) is again

immediate, and Assumption (3.2) holds for μ( j) = 1 with w = 0, for μ( j) = j + 1
with w = maxi (bi − di − γ − κ)+ (assuming (bi ) and (di ) to be such that this is
finite), or indeed for μ( j) = ( j + 1)s with any s ≥ 2, with appropriate choice of
w. With the choice μ( j) = j + 1, F again maps elements of Rμ to Rμ, and is also
locally Lipschitz in the μ-norm, with K (μ, F;) = 3ργ.

To check Assumptions 2.1, take ν = μ; once again, (2.5) is a finite sum for each r .
Then, for (2.6), it is immediate that U0(x) = 0. For any r ≥ 1, using arguments from
the previous example,

Ur (x) ≤ r2r−1

⎧
⎨

⎩

∑

i≥1

ibix
i (i + 1)r−1 +

∑

i≥1

∑

k≥0

iργxixk(k + 1)r−1

⎫
⎬

⎭

≤ r2r−1{max
i

bi Sr (x) + ργ S1(x)Sr−1(x)}
≤ r2r−1{max

i
bi Sr (x) + ργ S0(x)Sr (x)},

so that, since S0(x) = 1, we can take kr1 = r2r−1(maxi bi + ργ ) and kr2 = kr4 = 0
in (2.6), and r (1)

max = ∞. Finally, for (2.7), V0(x) = 0 and, for r ≥ 1,

Vr (x) ≤ r2
{

22(r−1) max
i

bi S2r−1(x) + max
i

(i−1di )S2r (x) + γ (1 − ρ)S2r−1(x)

+ργ (22(r−1)S1(x)S2r−2(x) + S0(x)S2r−1(x))

}

+ κS2r (x),

so that we can take p(r) = 2r , and (assuming i−1di to be finite)

kr3 = κ + r2{22(r−1)(max
i

bi + ργ ) + max
i

(i−1di ) + γ },
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and kr5 = 0 for any r ≥ 1, and r (2)
max = ∞. In Assumptions 4.2, we can again take

rμ = 1 and ζ(k) = (k + 1)7, giving r(ζ ) = 8, b(ζ ) = 1 and ρ(ζ, μ) = 16.
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