80 research outputs found

    Spike-in validation of an Illumina-specific variance-stabilizing transformation

    Get PDF
    BACKGROUND: Variance-stabilizing techniques have been used for some time in the analysis of gene expression microarray data. A new adaptation, the variance-stabilizing transformation (VST), has recently been developed to take advantage of the unique features of Illumina BeadArrays. VST has been shown to perform well in comparison with the widely-used approach of taking a log2 transformation, but has not been validated on a spike-in experiment. We apply VST to the data from a recently published spike-in experiment and compare it both to a regular log2 analysis and a recently recommended analysis that can be applied if all raw data are available. FINDINGS: VST provides more power to detect differentially expressed genes than a log2 transformation. However, the gain in power is roughly the same as utilizing the raw data from an experiment and weighting observations accordingly. VST is still advantageous when large changes in expression are anticipated, while a weighted log2 approach performs better for smaller changes. CONCLUSION: VST can be recommended for summarized Illumina data regardless of which Illumina pre-processing options have been used. However, using the raw data is still encouraged whenever possible

    A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data.

    Get PDF
    Illumina BeadArrays are among the most popular and reliable platforms for gene expression profiling. However, little external scrutiny has been given to the design, selection and annotation of BeadArray probes, which is a fundamental issue in data quality and interpretation. Here we present a pipeline for the complete genomic and transcriptomic re-annotation of Illumina probe sequences, also applicable to other platforms, with its output available through a Web interface and incorporated into Bioconductor packages. We have identified several problems with the design of individual probes and we show the benefits of probe re-annotation on the analysis of BeadArray gene expression data sets. We discuss the importance of aspects such as probe coverage of individual transcripts, alternative messenger RNA splicing, single-nucleotide polymorphisms, repeat sequences, RNA degradation biases and probes targeting genomic regions with no known transcription. We conclude that many of the Illumina probes have unreliable original annotation and that our re-annotation allows analyses to focus on the good quality probes, which form the majority, and also to expand the scope of biological information that can be extracted

    A consensus prognostic gene expression classifier for ER positive breast cancer.

    Get PDF
    BACKGROUND: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer. RESULTS: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation. CONCLUSION: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors

    Latent regulatory potential of human-specific repetitive elements

    Get PDF
    At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it

    The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing

    Get PDF
    RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csb(m/m) developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders

    High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer.

    Get PDF
    BACKGROUND: The characterization of copy number alteration patterns in breast cancer requires high-resolution genome-wide profiling of a large panel of tumor specimens. To date, most genome-wide array comparative genomic hybridization studies have used tumor panels of relatively large tumor size and high Nottingham Prognostic Index (NPI) that are not as representative of breast cancer demographics. RESULTS: We performed an oligo-array-based high-resolution analysis of copy number alterations in 171 primary breast tumors of relatively small size and low NPI, which was therefore more representative of breast cancer demographics. Hierarchical clustering over the common regions of alteration identified a novel subtype of high-grade estrogen receptor (ER)-negative breast cancer, characterized by a low genomic instability index. We were able to validate the existence of this genomic subtype in one external breast cancer cohort. Using matched array expression data we also identified the genomic regions showing the strongest coordinate expression changes ('hotspots'). We show that several of these hotspots are located in the phosphatome, kinome and chromatinome, and harbor members of the 122-breast cancer CAN-list. Furthermore, we identify frequently amplified hotspots on 8q22.3 (EDD1, WDSOF1), 8q24.11-13 (THRAP6, DCC1, SQLE, SPG8) and 11q14.1 (NDUFC2, ALG8, USP35) associated with significantly worse prognosis. Amplification of any of these regions identified 37 samples with significantly worse overall survival (hazard ratio (HR) = 2.3 (1.3-1.4) p = 0.003) and time to distant metastasis (HR = 2.6 (1.4-5.1) p = 0.004) independently of NPI. CONCLUSION: We present strong evidence for the existence of a novel subtype of high-grade ER-negative tumors that is characterized by a low genomic instability index. We also provide a genome-wide list of common copy number alteration regions in breast cancer that show strong coordinate aberrant expression, and further identify novel frequently amplified regions that correlate with poor prognosis. Many of the genes associated with these regions represent likely novel oncogenes or tumor suppressors.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore