150 research outputs found

    Densidade da madeira de árvores em savanas do norte da Amazônia brasileira

    Get PDF
    Densidade da madeira (DM) é uma variável importante para estimativas de estoques de carbono arbóreo em ecossistemas terrestres. Este tema é pobremente investigado em áreas de savana da Amazônia brasileira. O objetivo deste estudo foi investigar a DM das oito principais espécies arbóreas que ocorrem na savana aberta de Roraima, a maior área de savana do norte do bioma Amazônia. Foram verificadas as variações na DM em função da espécie e dos diferentes diâmetros observados ao longo da dimensão vertical de 75 indivíduos amostrados em seis sítios de coleta. Foi utilizado o método direto para obtenção de peças de madeira do fuste e da copa. Os resultados indicaram discrepância significativa interespecífica, sendo Roupala montana Aubl. a espécie de maior DM média (0,674 g cm-3). Foi detectado que existe variação significativa da DM entre as peças do fuste e da copa, independente da espécie e do sítio de coleta. A densidade da madeira de peças da copa com diâmetro entre 5 e 10 cm pode ser utilizada como preditora da DM média do indivíduo arbóreo. Nós concluimos que a DM das oito espécies arbóreas investigadas possui variabilidade interespecífica, com discrepâncias entre a DM do fuste e das partes lenhosas da copa. As distinções aqui detectadas devem ser considerados como uma importante ferramenta para melhorar as estimativas de estoque de carbono em áreas de savanas na Amazônia

    The troublesome ticks research protocol: Developing a comprehensive, multidiscipline research plan for investigating human tick-associated disease in Australia

    Get PDF
    In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia

    Height-diameter allometry of tropical forest trees

    Get PDF
    Copyright © 2011 European Geosciences Union. This is the published version available at http://www.biogeosciences.net/8/1081/2011/bg-8-1081-2011.html doi:10.5194/bg-8-1081-2011Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account
    corecore