5,923 research outputs found

    On the Number Density of Sunyaev-Zel'dovich Clusters of Galaxies

    Get PDF
    If the mean properties of clusters of galaxies are well described by the entropy-driven model, the distortion induced by the cluster population on the blackbody spectrum of the Cosmic Microwave Background radiation is proportional to the total amount of intracluster gas while temperature anisotropies are dominated by the contribution of clusters of about 10^{14} solar masses. This result depends marginally on cluster parameters and it can be used to estimate the number density of clusters with enough hot gas to produce a detectable Sunyaev-Zel'dovich effect. Comparing different cosmological models, the relation depends mainly on the density parameter Omega_m. If the number density of clusters could be estimated by a different method, then this dependence could be used to constrain Omega_m.Comment: 8 pages, 3 figures, submitted to ApJ Letter

    Noncommutative Conformally Coupled Scalar Field Cosmology and its Commutative Counterpart

    Full text link
    We study the implications of a noncommutative geometry of the minisuperspace variables for the FRW universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC-frame, where it is manifest in the universe degrees of freedom, and in the C-frame, where it is manifest through theta-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of theta. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum FRW universe. In the quantum context, we find non-singular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Non-singular solutions in the NC-frame can be mapped into singular ones in the C-frame.Comment: explanations added, references include

    Noncommutative Geometry and Cosmology

    Full text link
    We study some consequences of noncommutativity to homogeneous cosmologies by introducing a deformation of the commutation relation between the minisuperspace variables. The investigation is carried out for the Kantowski-Sachs model by means of a comparative study of the universe evolution in four different scenarios: the classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative. The comparison is rendered transparent by the use of the Bohmian formalism of quantum trajectories. As a result of our analysis, we found that noncommutativity can modify significantly the universe evolution, but cannot alter its singular behavior in the classical context. Quantum effects, on the other hand, can originate non-singular periodic universes in both commutative and noncommutative cases. The quantum noncommutative model is shown to present interesting properties, as the capability to give rise to non-trivial dynamics in situations where its commutative counterpart is necessarily static.Comment: 22 pages, 5 figures, substantial changes in the presentation, results are the same, to appear in Physical Review

    Sunyaev - Zel'dovich fluctuations from spatial correlations between clusters of galaxies

    Full text link
    We present angular power spectra of the cosmic microwave background radiation anisotropy due to fluctuations of the Sunyaev-Zel'dovich (SZ) effect through clusters of galaxies. A contribution from the correlation among clusters is especially focused on, which has been neglected in the previous analyses. Employing the evolving linear bias factor based on the Press-Schechter formalism, we find that the clustering contribution amounts to 20-30% of the Poissonian one at degree angular scales. If we exclude clusters in the local universe, it even exceeds the Poissonian noise, and makes dominant contribution to the angular power spectrum. As a concrete example, we demonstrate the subtraction of the ROSAT X-ray flux-limited cluster samples. It indicates that we should include the clustering effect in the analysis of the SZ fluctuations. We further find that the degree scale spectra essentially depend upon the normalization of the density fluctuations, i.e., \sigma_8, and the gas mass fraction of the cluster, rather than the density parameter of the universe and details of cluster evolution models. Our results show that the SZ fluctuations at the degree scale will provide a possible measure of \sigma_8, while the arc-minute spectra a probe of the cluster evolution. In addition, the clustering spectrum will give us valuable information on the bias at high redshift, if we can detect it by removing X-ray luminous clusters.Comment: 11 pages, 4 figures, submitted to Astrophysical Journa

    Enhancing the Accuracy of Ab Initio Molecular Dynamics by Fine Tuning of Effective Two-Body Interactions: Acetonitrile as a Test Case

    Get PDF
    Grimme’s dispersion-corrected density functional theory (DFT-D) methods have emerged among the most practical approaches to perform accurate quantum mechanical calculations on molecular systems ranging from small clusters to microscopic and mesoscopic samples, i.e., including hundreds or thousands of molecules. Moreover, DFT-D functionals can be easily integrated into popular ab initio molecular dynamics (MD) software packages to carry out first-principles condensed-phase simulations at an affordable computational cost. Here, starting from the well-established D3 version of the dispersion-correction term, we present a simple protocol to improve the accurate description of the intermolecular interactions of molecular clusters of growing size, considering acetonitrile as a test case. Optimization of the interaction energy was performed with reference to diffusion quantum Monte Carlo calculations, successfully reaching the same inherent accuracy of the latter (statistical error of ∌0.1 kcal/mol per molecule). The refined DFT-D3 model was then used to perform ab initio MD simulations of liquid acetonitrile, again showing significant improvements toward available experimental data with respect to the default correction

    Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance

    Get PDF
    During antibiotic treatment, the evolution of bacterial pathogens is fundamentally affected by bottlenecks and varying selection levels imposed by the drugs. Bottlenecks—that is, reductions in bacterial population size—lead to an increased influence of random effects (genetic drift) during bacterial evolution, and varying antibiotic concentrations during treatment may favour distinct resistance variants. Both aspects influence the process of bacterial evolution during antibiotic therapy and thereby treatment outcome. Surprisingly, the joint influence of these interconnected factors on the evolution of antibiotic resistance remains largely unexplored. Here we combine evolution experiments with genomic and genetic analyses to demonstrate that bottleneck size and antibiotic-induced selection reproducibly impact the evolutionary path to resistance in pathogenic Pseudomonas aeruginosa, one of the most problematic opportunistic human pathogens. Resistance is favoured—expectedly—under high antibiotic selection and weak bottlenecks, but—unexpectedly—also under low antibiotic selection and severe bottlenecks. The latter is likely to result from a reduced probability of losing favourable variants through drift under weak selection. Moreover, the absence of high resistance under low selection and weak bottlenecks is caused by the spread of low-resistance variants with high competitive fitness under these conditions. We conclude that bottlenecks, in combination with drug-induced selection, are currently neglected key determinants of pathogen evolution and outcome of antibiotic treatment

    Incorporation of excluded volume correlations into Poisson-Boltzmann theory

    Get PDF
    We investigate the effect of excluded volume interactions on the electrolyte distribution around a charged macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account beyond standard mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several commonly proposed local density functional approaches for excluded volume interactions cannot be used for this purpose. Instead, we employ a non-local excess free energy by using a simple constant weight approach. We compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all investigated cases our simple weighted density theory yields more realistic results than the standard PB approach, whereas all local density theories do not improve on the PB density profiles but on the contrary, deviate even more from the simulation results.Comment: 23 pages, 7 figures, 1 tabl

    Gravitation and Duality Symmetry

    Full text link
    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes, references added. Accepted for publication in Int. J. Mod. Phys.

    Multimode Hong-Ou-Mandel Interferometry

    Full text link
    We review some recent experiments based upon multimode two-photon interference of photon pairs created by spontaneous parametric down-conversion. The new element provided by these experiments is the inclusion of the transverse spatial profiles of the pump, signal and idler fields. We discuss multimode Hong-Ou-Mandel interference, and show that the transverse profile of the pump beam can be manipulated in order to control two-photon interference. We present the basic theory and experimental results as well as several applications to the field of quantum information.Comment: 20 pages, 14 figures, Brief Review to be published in Modern Physics Letters
    • 

    corecore