217 research outputs found

    Diffusion anomaly and dynamic transitions in the Bell-Lavis water model

    Full text link
    In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The Bell-Lavis model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density (TMD). Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded

    Liquid-state theory of charged colloids

    Full text link
    A simple theory of the fluid state of a charged colloidal suspension is proposed. The full free energy of a polyelectrolyte solution is calculated. It is found that the counterions condense onto the polyions forming clusters composed of one polyion and n counterions. The distribution of cluster sizes is determined explicitly. In agreement with the current experimental and Monte Carlo results, no liquid-gas phase separation was encountered.Comment: 4 pages, 2 Postscript figures, uses multicol.sty; changed conten

    Donnan equilibrium and the osmotic pressure of charged colloidal lattices

    Full text link
    We consider a system composed of a monodisperse charge-stabilized colloidal suspension in the presence of monovalent salt, separated from the pure electrolyte by a semipermeable membrane, which allows the crossing of solvent, counterions, and salt particles, but prevents the passage of polyions. The colloidal suspension, that is in a crystalline phase, is considered using a spherical Wigner-Seitz cell. After the Donnan equilibrium is achieved, there will be a difference in pressure between the two sides of the membrane. Using the functional density theory, we obtained the expression for the osmotic pressure as a function of the concentration of added salt, the colloidal volume fraction, and the size and charge of the colloidal particles. The results are compared with the experimental measurements for ordered polystyrene lattices of two different particle sizes over a range of ionic strengths and colloidal volume fractions.Comment: 8 pages, 4 Postscript figures, uses multicol.sty, to be published in European Physical Journal

    Dynamic Transitions in a Two Dimensional Associating Lattice Gas Model

    Full text link
    Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical λ\lambda-line. The high density liquid phase and the fluid phases are separated by a second τ\tau critical line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong trans ition when the critical λ\lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the τ\tau-critical line is crossed by decreasing the temperature at a constant chemical potential.Comment: 22 page

    Hydration and anomalous solubility of the Bell-Lavis model as solvent

    Get PDF
    We address the investigation of the solvation properties of the minimal orientational model for water, originally proposed by Bell and Lavis. The model presents two liquid phases separated by a critical line. The difference between the two phases is the presence of structure in the liquid of lower density, described through orientational order of particles. We have considered the effect of small inert solute on the solvent thermodynamic phases. Solute stabilizes the structure of solvent, by the organization of solvent particles around solute particles, at low temperatures. Thus, even at very high densities, the solution presents clusters of structured water particles surrounding solute inert particles, in a region in which pure solvent would be free of structure. Solute intercalates with solvent, a feature which has been suggested by experimental and atomistic simulation data. Examination of solute solubility has yielded a minimum in that property, which may be associated with the minimum found for noble gases. We have obtained a line of minimum solubility (TmS) across the phase diagram, accompanying the line of maximum in density (TMD). This coincidence is easily explained for non-interacting solute and it is in agreement with earlier results in the literature. We give a simple argument which suggests that interacting solute would dislocate TmS to higher temperatures

    Thermodynamic, Dynamic and Structural Anomalies for Shoulder-like potentials

    Full text link
    Using molecular dynamic simulations we study a family of continuous core-softened potentials consisting of a hard core, a shoulder at closest distances and an attractive well at further distance. The repulsive shoulder and the well distances represent two length scales. We show that if the first scale, the shoulder, is repulsive or has a small well, the potential has a region in the pressure-temperature phase diagram with density, diffusion and structural anomalies. However, if the closest scale becomes a deep attractive well the regions in the pressure-temperature phase diagram where the three anomalies are present shrink and disappear. This result enables us to predict by the shape of the core-softened potential if anomalies would or would not be present

    Anomalies in a waterlike model confined between plates

    Full text link
    Using molecular dynamic simulations we study a waterlike model confined between two fixed hydrophobic plates. The system is tested for density, diffusion and structural anomalous behavior and compared with the bulk results. Within the range of confining distances we had explored we observe that in the pressure-temperature phase diagram the temperature of maximum density (TMD line), the temperature of maximum and minimum diffusion occur at lower temperatures when compared with the bulk values. For distances between the two layers below a certain threshold ,ddcd\le d_c, only two layers of particles are formed, for ddcd\ge d_c three or more layers are formed. In the case of three layers the central layer stays liquid while the contact layers crystallize. This result is in agreement with simulations for atomistic models
    corecore