15,380 research outputs found

    Quantum density anomaly in optically trapped ultracold gases

    Get PDF
    We show that the Bose-Hubbard Model exhibits an increase in density with temperature at fixed pressure in the regular fluid regime and in the superfluid phase. The anomaly at the Bose-Einstein condensate is the first density anomaly observed in a quantum state. We propose that the mechanism underlying both the normal phase and the superfluid phase anomalies is related to zero point entropies and ground state phase transitions. A connection with the typical experimental scales and setups is also addressed. This key finding opens a new pathway for theoretical and experimental studies of water-like anomalies in the area of ultracold quantum gases

    Local heuristics and the emergence of spanning subgraphs in complex networks

    Get PDF
    We study the use of local heuristics to determine spanning subgraphs for use in the dissemination of information in complex networks. We introduce two different heuristics and analyze their behavior in giving rise to spanning subgraphs that perform well in terms of allowing every node of the network to be reached, of requiring relatively few messages and small node bandwidth for information dissemination, and also of stretching paths with respect to the underlying network only modestly. We contribute a detailed mathematical analysis of one of the heuristics and provide extensive simulation results on random graphs for both of them. These results indicate that, within certain limits, spanning subgraphs are indeed expected to emerge that perform well in respect to all requirements. We also discuss the spanning subgraphs' inherent resilience to failures and adaptability to topological changes

    Probabilistic heuristics for disseminating information in networks

    Get PDF
    We study the problem of disseminating a piece of information through all the nodes of a network, given that it is known originally only to a single node. In the absence of any structural knowledge on the network other than the nodes' neighborhoods, this problem is traditionally solved by flooding all the network's edges. We analyze a recently introduced probabilistic algorithm for flooding and give an alternative probabilistic heuristic that can lead to some cost-effective improvements, like better trade-offs between the message and time complexities involved. We analyze the two algorithms both mathematically and by means of simulations, always within a random-graph framework and considering relevant node-degree distributions

    Phase Diagram and Thermodynamic and Dynamic Anomalies in a Pure Repulsive Model

    Get PDF
    Using Monte Carlo simulations a lattice gas model with only repulsive interactions was checked for the presence of anomalies. We show that this system exhibits the density (temperature of maximum density - TMD) and diffusion anomalies as present in liquid water. These anomalous behavior exist in the region of the chemical potential vs temperature phase diagram where two structured phases are present. A fragile-to-strong dynamic transition is also observed in the vicinity of the TMD line

    The solar siblings in the Gaia era

    Full text link
    We perform realistic simulations of the Sun's birth cluster in order to predict the current distribution of solar siblings in the Galaxy. We study the possibility of finding the solar siblings in the Gaia catalogue by using only positional and kinematic information. We find that the number of solar siblings predicted to be observed by Gaia will be around 100 in the most optimistic case, and that a phase space only search in the Gaia catalogue will be extremely difficult. It is therefore mandatory to combine the chemical tagging technique with phase space selection criteria in order to have any hope of finding the solar siblings.Comment: To be published in the proceedings of the GREAT-ITN conference "The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", 1-5 December 2014, University of Barcelona, Spain, EAS Publications Series, eds Nicholas Walton, Francesca Figueras, and Caroline Soubira

    Two novel evolutionary formulations of the graph coloring problem

    Full text link
    We introduce two novel evolutionary formulations of the problem of coloring the nodes of a graph. The first formulation is based on the relationship that exists between a graph's chromatic number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The second formulation, unlike the first one, does not tackle one graph at a time, but rather aims at evolving a `program' to color all graphs belonging to a class whose members all have the same number of nodes and other common attributes. The heuristics that result from these formulations have been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and have been found to be competitive when compared to the several other heuristics that have also been tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio

    Influence of disordered porous media in the anomalous properties of a simple water model

    Full text link
    The thermodynamic, dynamic and structural behavior of a water-like system confined in a matrix is analyzed for increasing confining geometries. The liquid is modeled by a two dimensional associating lattice gas model that exhibits density and diffusion anomalies, in similarity to the anomalies present in liquid water. The matrix is a triangular lattice in which fixed obstacles impose restrictions to the occupation of the particles. We show that obstacules shortens all lines, including the phase coexistence, the critical and the anomalous lines. The inclusion of a very dense matrix not only suppress the anomalies but also the liquid-liquid critical point

    Modeling the input history of programs for improved instruction-memory performance

    Full text link
    When a program is loaded into memory for execution, the relative position of its basic blocks is crucial, since loading basic blocks that are unlikely to be executed first places them high in the instruction-memory hierarchy only to be dislodged as the execution goes on. In this paper we study the use of Bayesian networks as models of the input history of a program. The main point is the creation of a probabilistic model that persists as the program is run on different inputs and at each new input refines its own parameters in order to reflect the program's input history more accurately. As the model is thus tuned, it causes basic blocks to be reordered so that, upon arrival of the next input for execution, loading the basic blocks into memory automatically takes into account the input history of the program. We report on extensive experiments, whose results demonstrate the efficacy of the overall approach in progressively lowering the execution times of a program on identical inputs placed randomly in a sequence of varied inputs. We provide results on selected SPEC CINT2000 programs and also evaluate our approach as compared to the gcc level-3 optimization and to Pettis-Hansen reordering

    Fast and secure key distribution using mesoscopic coherent states of light

    Full text link
    This work shows how two parties A and B can securely share sequences of random bits at optical speeds. A and B possess true-random physical sources and exchange random bits by using a random sequence received to cipher the following one to be sent. A starting shared secret key is used and the method can be described as an unlimited one-time-pad extender. It is demonstrated that the minimum probability of error in signal determination by the eavesdropper can be set arbitrarily close to the pure guessing level. Being based on the MM-ry encryption protocol this method also allows for optical amplification without security degradation, offering practical advantages over the BB84 protocol for key distribution.Comment: 11 pages and 4 figures. This version updates the one published in PRA 68, 052307 (2003). Minor changes were made in the text and one section on Mutual Information was adde
    corecore