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Abstract

We study the use of local heuristics to determine spanning subgraphs for use in the dissemination of information in complex
networks. We introduce two different heuristics and analyze their behavior in giving rise to spanning subgraphs that perform well
in terms of allowing every node of the network to be reached, of requiring relatively few messages and small node bandwidth
for information dissemination, and also of stretching paths with respect to the underlying network only modestly. We contribute a
detailed mathematical analysis of one of the heuristics and provide extensive simulation results on random graphs for both of them.
These results indicate that, within certain limits, spanning subgraphs are indeed expected to emerge that perform well in respect to
all requirements. We also discuss the spanning subgraphs’ inherent resilience to failures and adaptability to topological changes.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Complex networks; Local heuristics; Spanning subgraphs

1. Introduction

Let G = (NG, EG) be an undirected graph with n = |NG| nodes and edges representing bidirectional links for
pairwise communication among the nodes. We regard G as standing for some unstructured, real-world network whose
nodes have no more information on the overall topology of G than can be inferred from their immediate neighborhoods.
Given these characteristics, G can also be seen as belonging to the class of networks that have recently come to be
referred to as complex networks [2].

Several of the typical problems that require a distributed solution by the nodes of G frequently involve the need
to disseminate a piece of information, call it I, through the nodes of the network that share the same connected
component with the node that originally possesses I. We assume that this node is unique with respect to that particular
information dissemination and refer to it as the originator.

There is a host of possibilities to solve this basic problem of disseminating information through the nodes of G,
but invariably they either depend on the existence of a spanning subgraph of G on whose edges the dissemination is
performed, or else they employ straightforward flooding of the network’s edges by copies of I. The former alternative
is often regarded as substantially more cost-effective in terms of several quantities of interest, but of course it carries
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with it the inherent need for the desired spanning subgraph to be initially determined and subsequently maintained if
the network undergoes topological changes [4].

Subgraphs of interest in this context include the well-known minimum spanning trees, for which several procedures
related to creation and maintenance are available [3,6,11], and include also the more general, so-called spanners,
which bring with them well-defined structural requirements related to efficiency indicators, but are on the other hand
considerably less well-known [13,17]. But regardless of the particular guise of the spanning subgraphs of G for use
in information dissemination, the importance of studying them in detail has in recent years found strong justification
from the practical side. Notable examples here include the case in which G is some virtual supergraph of a physical
network; in this case, spanning subgraphs of G are needed to function as the so-called overlay networks for end-to-end
communication over the underlying physical network [7].

In this paper we focus on one very basic question related to determining a spanning subgraph of a complex network
G: how close can we get to obtaining a subgraph of G that can be used to disseminate I through the nodes of the
originator’s connected component, while at the same time satisfying some basic set of performance requirements,
if nodes are only allowed to use local information (i.e., information that can be obtained from no farther than the
nodes’ immediate neighborhoods)? Important requirements involve the expected number of nodes reached when I is
disseminated, the expected number of copies of I that are needed, the expected degree of each node in the subgraph
(since it relates closely to how many copies of I a node can concurrently send out given its bandwidth limitations), and
also the expected path length from the originator on the subgraph.

Even though of a fundamental nature, this question is admittedly too general for an objective analysis. For this
reason, we concentrate on the narrower issue of investigating what happens in terms of the aforementioned performance
requirements when a subgraph of G is determined in a fully distributed fashion by the nodes according to the following
strictly local rules. Each node is responsible for choosing some of its own neighbors in the subgraph and makes its
choices in two subsequent steps: first one node is picked from among the node’s neighbors; then, with some nonzero
probability that we call �, the node gets to pick a second neighbor (which we allow to be identical to the first one it
picked).

If this simple procedure is performed by all the nodes of G, then clearly the resulting subgraph, which we denote by
D = (ND, ED), has ND = NG while ED contains all the edges (u, v) from G such that u chose v at least once or v

chose u. This subgraph is then necessarily a spanning subgraph of G; using it for disseminating I from the originator
is simply a question of having the originator send I to all of its neighbors in D, and similarly for all the other nodes
when they receive I for the first time. Our four performance requirements now have to be examined in terms of how
the connected components of D relate to those of G. In particular, does the connected component of D to which the
originator belongs span the entire connected component of G that contains it?

Throughout the paper we use cu to denote the number of choices made by node u and Cu to denote the set of nodes
(some of u’s neighbors) that get chosen by u. Clearly, 1� |Cu|�cu �2 and the set of u’s neighbors in D is given by
Cu, possibly enlarged by every other node v that is a neighbor of u in G and such that u ∈ Cv .

We call D a dissemination subgraph of G and devote the remainder of the paper to analyzing its properties. Our
analysis depends, naturally, on the specific criteria that each node uses when making its two decisions. We consider
two possibilities, of which the simplest, referred to as the uniform approach, lets each node make its choices uniformly
at random among its neighbors. Our analytical treatment of D’s properties in this case is given in Section 2; it is based
on regarding G as a random graph and makes use of the principles laid down in [16]. This is our core section, and its
results are complemented by the simulation results we present in Section 3 for Poisson-distributed node degrees (the
classic Erdős–Rényi model [9]) and also for degrees distributed according to a power law (recently discovered to be
approximately representative of relevant real-world networks [10,14,2]).

Even though the analytical treatment we offer in Section 2 is specific to this simplest possibility for a choice criterion,
at this point it seems to be as far as we have the means to go. For this reason, and notwithstanding the second possibility’s
clear superiority in terms of our stated performance requirements (see below), we only treat that possibility by means
of simulations, whose results are described in Section 3 along with those for the uniform approach. In any event, our
mathematical analysis for the uniform approach is innovative and we believe it may yield interesting insight into the
analysis of similar problems on complex networks. It may also ultimately be possible to generalize it to handle the
more complicated case of the second possibility of choice criteria.

We refer to the second possibility as the degree-based approach. In this approach, the first choice by a node selects
uniformly at random from those of its neighbors that have the highest degree (if this is the case for only one neighbor,
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then the first choice degenerates into a deterministic decision). The second choice selects a neighbor randomly in
proportion to its degree. The degree-based approach is clearly much less uninformed on the network’s topology than
the uniform approach. For this reason, it is expected to surpass the uniform approach in terms of the indicators we have
informally introduced. That this is indeed the case is apparent from the simulation results we show in Section 3. But,
even if we find this to be only expected, we also find it remarkable that such a simple strategy of strictly local nature
should support a positive answer to our original question to the extent that it does.

We complement our study of our local, two-choice scheme to approximate a spanning subgraph of G by elaborating
on its resilience and adaptability properties. These are crucial in the context of networks that may undergo topological
changes and we treat them in Section 4. To finalize, we offer concluding remarks in Section 5.

2. Mathematical analysis

Henceforth we regard G as a random graph having node degrees distributed independently from one another and
identically to a random variable KG. Furthermore, the nodes of G are assumed to be connected to one another at random
given their degrees, so the degrees of two adjacent nodes remain independent. Our results in this section target the case
of a formally infinite set of nodes, that is, the case in which n → ∞.

Let PG(a) be the probability that a randomly chosen node of G has degree a. The average degree of G, denoted by
ZG, is ZG = ∑n−1

a=0 aPG(a). Also, given the random nature of node interconnections in G, the probability that some
node’s neighbor has degree b is equal to the expected fraction of edges incident to degree-b nodes, which is given by

bPG(b)∑n−1
a=0 aPG(a)

= bPG(b)

ZG

. (1)

From [15,8,16], we know how to characterize the existence in G of a large, size-�(n) connected component, commonly
known as the giant connected component of G (henceforth denoted by GCCG). If 〈K2

G〉 denotes the second moment of

the random variable KG, that is, 〈K2
G〉 = ∑n−1

a=0 a2PG(a), then GCCG almost surely exists if and only if

〈K2
G〉

ZG

> 2 (2)

or, equivalently,

n−1∑
a=0

aPG(a)

ZG

a > 2. (3)

Intuitively, for a randomly chosen node u and letting v be one of its neighbors, this means that GCCG almost surely
exists (and then G is said to be above the phase transition that gives rise to GCCG) if and only if v is expected to have
strictly more than one neighbor besides u. Otherwise, all the connected components of G are small, consisting of o(n)

nodes (and G is said to be below the phase transition).
Now let D be a dissemination subgraph of G constructed by the uniform approach; it is also a random graph, and we

let GCCD denote its giant connected component. Given a randomly chosen, degree-a node u of G, let �(a)
r (1) denote

the probability that |Cu| = 1. If a > 0, then

�(a)
r (1) = 1 − � + �/a, (4)

which reflects the probability that either cu = 1 or cu = 2 but both of u’s choices were identical. It follows that the
probability that |Cu| = 2 is

�(a)
r (2) = 1 − �(a)

r (1) = �(a − 1)/a. (5)

For a = 0, clearly �(a)
r (1) = �(a)

r (2) = 0.
We now pause momentarily to note that, throughout the paper, we employ the mnemonic “r” when referring to

randomly chosen nodes as in the preceding paragraph. Furthermore, when considering a node v reached by following
one of its incident edges, say (u, v) for some neighbor u of v, we utilize the mnemonics “c,” “nc, 1,” and “nc, 2” as
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references, respectively, to the cases of v ∈ Cu, v /∈ Cu with cv = 1, and v /∈ Cu with cv = 2. These mnemonics are
intended to facilitate the use of the probabilities calculated above (and also the ones we are about to calculate) later in
this section.

Let u be a randomly chosen node and v one of its neighbors in G such that v∈Cu. Nodes u and v are then neighbors
in D. Let b be the degree of v in G. The probability that |Cv \ {u}|=0 (i.e., v chose u and no other neighbor besides u),
which we denote by �(b)

c (0), is the probability that all of v’s choices resulted in u, that is,

�(b)
c (0) = (1 − �)

1

b
+ �

1

b2
= 1 − � + �/b

b
. (6)

Similarly, the probability that |Cv \ {u}| = 1, which we denote by �(b)
c (1), is

�(b)
c (1) = (1 − �)

(
b − 1

b

)
+ �

[
3

(
b − 1

b2

)]
=

(
b − 1

b

)
(1 − � + 3�/b), (7)

which means that either cv = 1 and u /∈ Cv , or cv = 2 and either v chose u exactly once or it did not but its choices

were identical. Finally, the probability that |Cv \ {u}| = 2, which we denote by �(b)
c (2), is the probability that cv = 2

while v’s choices were distinct both from each other and from u, that is,

�(b)
c (2) = �

(
b − 1

b

) (
b − 2

b

)
. (8)

(It is worth noting that �(b)
c (0), �(b)

c (1), and �(b)
c (2) remain as calculated even without the condition that v ∈ Cu, and

in this case the use of “c” is pointless. We do insist on v ∈ Cu, however, because this is the context in which the three
probabilities are used in the sequel.)

In an analogous way, let us consider a randomly chosen node u and a degree-b neighbor v of u in G such that v /∈ Cu.
If this is the case, then u and v are neighbors in D if and only if u ∈ Cv . If cv = 1, then u ∈ Cv if and only if
|Cv \ {u}| = 0, and this happens with a probability that we denote by �(b)

nc,1(0) and is such that

�(b)
nc,1(0) = 1/b. (9)

So 1 − �(b)
nc,1(0) is the probability that u and v are not neighbors in D, given that v /∈ Cu and cv = 1. If cv = 2, then

the probability that u ∈ Cv is (2b − 1)/b2, as we see from the fact that either |Cv \ {u}| = 0 or |Cv \ {u}| = 1 may
happen. The probability of the former, denoted by �(b)

nc,2(0), is given by

�(b)
nc,2(0) = 1

b2
, (10)

while the probability of the latter, denoted by �(b)
nc,2(1), refers to exactly one of v’s choices resulting in u. Thence

�(b)
nc,2(1) = 2b − 2

b2
. (11)

So, given that v /∈ Cu and cv = 2, 1 − �(b)
nc,2(0) − �(b)

nc,2(1) is the probability that u and v are not neighbors in D.
In the remainder of this section we analyze the efficacy of the uniform approach, concerning the performance

requirements mentioned in Section 1 when D is used to disseminate I from the originator. Recall that we assume the
limiting case of n → ∞, so the probability that a finite-length cycle exists is negligible. We also assume that both G
and D are above their phase transitions (that is, both GCCG and GCCD almost surely exist) and predicate our analysis
upon the originator being a member of GCCG.

2.1. Number of nodes reached

Let Pn be the ratio of the expected number of nodes reached when I is disseminated on D’s edges to the expected
number of nodes in GCCG. Let also �G and �D be the fractions of n corresponding to nodes inside GCCG and GCCD ,
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respectively. There are two cases to be considered. The first case is the one in which the originator is a member of
GCCD , which occurs with probability �D/�G, this being also the ratio in this case. The second case corresponds to the
originator being outside GCCD and then the ratio is negligible. Therefore, Pn is given by

Pn = �2
D

�2
G

. (12)

Given a node u and one of its neighbors, say v, we define the reach of u through v in G as the set of nodes reachable
by a path in G starting at u whose first edge is (u, v). We call v a dead end with respect to u in G if the reach of u
through v in G is o(n). Clearly, v is a dead end with respect to u in G, and this happens with probability denoted by
q, if and only if each of the other neighbors of v, in turn, is itself a dead end with respect to v in G, and this happens
with probability q for each of those neighbors as well. If the degree of v is b, then it is a dead end with respect to u in
G with probability qb−1. And since the probability that v has degree b is given as in (1), this leads to

q =
n−1∑
b=1

bPG(b)

ZG

qb−1. (13)

Similarly, a randomly chosen node is not in GCCG if and only if each of its neighbors is a dead end with respect to it
in G. The expected fraction of nodes inside GCCG is then

�G = 1 −
n−1∑
a=0

PG(a)qa. (14)

The value of �D can be obtained in a similar, albeit more complex, way; it relies on definitions of reach and of dead-end
nodes in D that are completely analogous to the ones in G. Let u be a randomly chosen node and v one of its neighbors
in G. Let also qc, qnc,1, and qnc,2 be the conditional probabilities that v is a dead end with respect to u in D given,
respectively, that v ∈ Cu, that v /∈ Cu with cv = 1, and that v /∈ Cu with cv = 2. Regardless of which of these three
conditions the case is, v is a dead end with respect to u in D if and only if either v is not a neighbor of u in D (which
cannot happen under the first condition), or it is but the reach of u through v in D is o(n), which means that all the other
neighbors of v in G are themselves dead ends with respect to it in D. We may then write

qc =
n−1∑
b=1

bPG(b)

ZG

[
�(b)

c (0)((1 − �)qnc,1 + �qnc,2)
b−1 + �(b)

c (1)qc((1 − �)qnc,1 + �qnc,2)
b−2

+�(b)
c (2)q2

c ((1 − �)qnc,1 + �qnc,2)
b−3

]
, (15)

qnc,1 =
n−1∑
b=1

bPG(b)

ZG

[
1 − �(b)

nc,1(0) + �(b)
nc,1(0)((1 − �)qnc,1 + �qnc,2)

b−1
]
, (16)

and

qnc,2 =
n−1∑
b=1

bPG(b)

ZG

[
1 − �(b)

nc,2(0) − �(b)
nc,2(1) + �(b)

nc,2(0)((1 − �)qnc,1 + �qnc,2)
b−1

+�(b)
nc,2(1)qc((1 − �)qnc,1 + �qnc,2)

b−2
]
, (17)

referring back to the probabilities calculated in the introduction to Section 2.
Each of the expressions in (15)–(17) illustrates our use of those probabilities. We comment on (15) in detail and urge

the reader to consider each of the others, as well as other expressions yet to come, in a similar light. In (15), and for
k ∈ {0, 1, 2}, qk

c ((1−�)qnc,1 +�qnc,2)
b−1−k gives the conditional probability that all the b−1 neighbors of a degree-b

neighbor v of u that are not u are dead ends with respect to v in D; the condition is that |Cv \ {u}| = k, which happens
with probability �(b)

c (k). Thus qk
c is the dead-end probability for the k neighbors in Cv \ {u}, and ((1−�)qnc,1 +�qnc,2)

is the dead-end probability for each of the b − 1 − k neighbors that are not in Cv ∪ {u}.
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Now, since a randomly chosen node is not in GCCD if and only if each of its neighbors in G is a dead end with
respect to it in D, we have

�D=1−PG(0)−
n−1∑
a=1

PG(a)
[
�(a)

r (1)qc((1−�)qnc,1+�qnc,2)
a−1+�(a)

r (2)q2
c ((1−�)qnc,1+�qnc,2)

a−2
]
. (18)

Notice that, in (18), PG(0) must be singled out of the sum in order to be taken into account, since �(0)
r (1) = �(0)

r (2) = 0.

2.2. Number of messages sent

We denote by Pm the ratio of the expected number of messages sent when disseminating I through D’s edges to the
expected number of messages sent when disseminating I through the edges of a spanning tree of GCCG. Let ZGCCD

be the average degree of nodes in D conditioned upon membership in GCCD . Restricting our analysis to the case in
which the originator is in GCCD (the other case leads to a negligible ratio), which occurs with probability �D/�G, the
expected number of messages sent on the edges of D is n�DZGCCD

, while the expected number of messages sent on
the edges of the spanning tree of GCCG is 2(n�G − 1), thus leading to

Pm = �2
DnZGCCD

2�G(n�G − 1)
. (19)

Now let PD(i | GCCD) be the probability that a randomly chosen node of GCCD has degree i in D. We have

ZGCCD
=

n−1∑
i=0

iPD(i | GCCD). (20)

If also we let PD(i | a, GCCD) be the conditional probability that a randomly chosen node of GCCD has degree i in
D given that it has degree a in G, then PD(i | GCCD) can be written as

PD(i | GCCD) =
n−1∑
a=i

PD(i | a, GCCD)PG(a | GCCD), (21)

where PG(a | GCCD) is the probability that the node has degree a in G. We henceforth approximate PD(i | a, GCCD)

by PD(i | a), which is the probability that a randomly chosen, degree-a node of G has degree i in D (more on this
approximation in Section 2.3). Also, if u is this node and v one of its neighbors in G such that v /∈ Cu, then the
probability that u ∈ Cv , denoted by r, is given by

r =
n−1∑
b=1

bPG(b)

ZG

[
(1 − �)�(b)

nc,1(0) + �(�(b)
nc,2(0) + �(b)

nc,2(1))
]

(22)

and yields

PD(i | a) = �(a)
r (1)

(
a − 1

i − 1

)
ri−1(1 − r)a−i + �(a)

r (2)

(
a − 2

i − 2

)
ri−2(1 − r)a−i . (23)

Using Bayes’ rule to rewrite PG(a | GCCD) as

PG(a | GCCD) = PD(GCCD | a)PG(a)

PD(GCCD)
, (24)

where PD(GCCD) = �D and

PD(GCCD | a) = 1 − �(a)
r (1)qc((1 − �)qnc,1 + �qnc,2)

a−1 − �(a)
r (2)q2

c ((1 − �)qnc,1 + �qnc,2)
a−2, (25)
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leads, finally, to

ZGCCD
=

n−1∑
i=0

i
n−1∑
a=i

PD(i | a)
PD(GCCD | a)PG(a)

�D

=
n−1∑
a=0

PD(GCCD | a)PG(a)

�D

a∑
i=0

iPD(i | a), (26)

where
a∑

i=0
iPD(i | a) = �(a)

r (1)(1 + (a − 1)r) + �(a)
r (2)(2 + (a − 2)r). (27)

2.3. Node degree

Let us now consider the expected degree of D conditioned upon membership in GCCG, which we denote by ZD,GCCG
.

Let PD(i | GCCG) be the probability that a randomly chosen node of GCCG has degree i in D. Then ZD,GCCG
is

clearly given by

ZD,GCCG
=

n−1∑
i=0

iPD(i | GCCG), (28)

where

PD(i | GCCG) =
n−1∑
a=i

PD(i | a, GCCG)PG(a | GCCG), (29)

PD(i | a, GCCG) being the probability that a randomly chosen, degree-a node of GCCG has degree i in D. This lets
(28) be rewritten as

ZD,GCCG
=

n−1∑
i=0

i
n−1∑
a=i

PD(i | a, GCCG)PG(a | GCCG)

=
n−1∑
a=0

PG(a | GCCG)
a∑

i=0
iPD(i | a, GCCG), (30)

which, using Bayes’ rule to write

PG(a | GCCG) = PG(GCCG | a)PG(a)

PG(GCCG)
= (1 − qa)PG(a)

�G

(31)

(cf. (13)), yields

ZD,GCCG
=

n−1∑
a=0

(1 − qa)PG(a)

�G

a∑
i=0

iPD(i | a, GCCG). (32)

One possibility now would be to proceed similarly to what we did in Section 2.2 and approximate PD(i | a, GCCG)

by PD(i | a). This would immediately let us use (27) in (32) and be done. However, we know from early experiments
like the ones to be discussed in Section 3 that, unlike the case of Section 2.2, this sometimes yields an agreement
between analytical prediction and simulation that is not satisfactory. In the present case, then, we look more closely at
the nature of PD(i | a, GCCG) and first notice that (23)—and consequently (27) as well—can essentially be used to
express PD(i | a, GCCG), provided the probability r appearing in it is made to depend on a and on the degree-a node’s
membership in GCCG. This is to be taken in opposition to the expression for r in (22), but clearly all that needs to be
changed in (22) to make the dependencies manifest is to replace bPG(b)/ZG as the probability that a given neighbor
of a degree-a node has degree b. The reason why this is so is that, given a degree-a node’s membership in GCCG, that
probability is no longer independent from a (as we know from our comment following (3), the existence of GCCG is
related to nodes’ neighbors’ degrees).

Let p be the probability that we seek for use in place of bPG(b)/ZG. That is, p is the probability that a given neighbor
of a degree-a node of GCCG has degree b. The probability that a degree-a node is in GCCG is 1−qa (all its a neighbors
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must otherwise be dead ends with respect to it in G), so the probability that a degree-a node is a member of GCCG

and moreover a given neighbor of it has degree b is p(1 − qa). But this latter probability can also be expressed as
(bPG(b)/ZG)(1 − qa+b−2), since the rightmost factor is the probability of the condition that a pair of neighbors (one
of degree a, the other of degree b) is in GCCG, and furthermore bPG(b)/ZG, under that condition, continues to give
the probability that a given neighbor of a degree-a node has degree b. We may then write

p(1 − qa) = bPG(b)

ZG

(1 − qa+b−2), (33)

from which it follows that

p = bPG(b)

ZG

(
1 − qa+b−2

1 − qa

)
. (34)

We note, finally, that an analogous but more complicated development could also be used to avoid the approximation
of PD(i | a, GCCD) by PD(i | a) made in Section 2.2. As explained, however, that would only add needless detail.

2.4. Path length

Let Pt be the ratio of the expected path length from the originator in D to the expected path length from the originator
in G. We may again restrict our analysis to the case in which the originator is a member of GCCD , which occurs
with probability �D/�G. Denoting by LGCCG

and LGCCD
the average path lengths from the originator in G and in D,

respectively, we have

Pt = �DLGCCD

�GLGCCG

. (35)

By (31), the average degree in G of the nodes inside GCCG, denoted by ZGCCG
, is

ZGCCG
=

n−1∑
a=0

a(1 − qa)PG(a)

�G

. (36)

Now let two nodes be called �-neighbors in a graph, for ��1, when the distance between them in the graph is � (the
case of � = 1 is simply the case of neighbors in the graph). Given a randomly chosen node u in GCCG and one of its
neighbors, say v, the expected number of v’s other neighbors (i.e., excluding u), denoted by �, is 1

� =
n−1∑
b=1

bPG(b)

ZG

(b − 1), (37)

and then the expected number of u’s 2-neighbors in G, which we denote by Z
(2)
GCCG

, is

Z
(2)
GCCG

= ZGCCG
�. (38)

In general, the expected number of u’s �-neighbors in G, denoted by Z
(�)
GCCG

, is

Z
(�)
GCCG

= Z
(�−1)
GCCG

� = ZGCCG
��−1. (39)

We can then obtain an approximation for LGCCG
by summing the values of Z

(�)
GCCG

from � = 1 up until the sum

becomes equal to the expected number of nodes inside GCCG minus one (to account for node u). Thus

LGCCG∑
�=1

Z
(�)
GCCG

= n�G − 1, (40)

1 The use of bPG(b)/ZG in (37) and later in (42)–(46) is in principle subject to the same corrections explained at the end of Section 2.3. However,
introducing those corrections in the present context not only seems unnecessary given the computational results to be discussed in Section 3, but
also would lead to much more complicated (and probably insoluble) versions of (40) and (56).
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which yields

LGCCG
= ln[((n�G − 1)/ZGCCG

)(� − 1) + 1]
ln �

. (41)

Let us now turn to obtaining the value of LGCCD
. Consider a randomly chosen node u of GCCD and a neighbor v of

u in G. If v /∈ Cu, then let rnc,1 be the conditional probability that u ∈ Cv given that cv = 1. We have

rnc,1 =
n−1∑
b=1

bPG(b)

ZG

�(b)
nc,1(0). (42)

Likewise, if rnc,2 is the conditional probability that u ∈ Cv given that cv = 2, then

rnc,2 =
n−1∑
b=1

bPG(b)

ZG

(
�(b)

nc,2(0) + �(b)
nc,2(1)

)
. (43)

Calculating the expected number of other neighbors of a neighbor v of u requires three cases to be considered. The
first case is the case of v ∈ Cu, and then the expected number of u’s 2-neighbors in D that are reachable from v is
tc(1, rnc,1, rnc,2), where

tc(x, y, z) =
n−1∑
b=1

bPG(b)

ZG

{
�(b)

c (0)(b − 1)((1 − �)y + �z) + �(b)
c (1)[x + (b − 2)((1 − �)y + �z)]

+�(b)
c (2)[2x + (b − 3)((1 − �)y + �z)]

}
. (44)

In the second case, v /∈ Cu with cv = 1. We similarly let

tnc,1(y, z) =
n−1∑
b=1

bPG(b)

ZG

[
�(b)

nc,1(0)(b − 1)((1 − �)y + �z)
]
, (45)

and then the expected number of u’s 2-neighbors in D that are reachable from v is tnc,1(rnc,1, rnc,2).
The third and final case is that of v /∈ Cu with cv = 2. As in the previous two cases, we let

tnc,2(x, y, z) =
n−1∑
b=1

bPG(b)

ZG

{
�(b)

nc,2(0)(b − 1)((1 − �)y + �z) + �(b)
nc,2(1)[x + (b − 2)((1 − �)y + �z)]

}
, (46)

which yields the expected number of u’s 2-neighbors in D that are reachable from v as tnc,2(1, rnc,1, rnc,2).
Now, for u a randomly chosen node in GCCD , and recalling (24), letting

tr(x, y, z) =
n−1∑
a=0

PD(GCCD | a)PG(a)

�D

{
�(a)

r (1)[x + (a − 1)((1 − �)y + �z)]

+�(a)
r (2)[2x + (a − 2)((1 − �)y + �z)]

}
(47)

allows the expected degree of u to be expressed as tr(1, rnc,1, rnc,2), and similarly the expected number of 2-neighbors
of u as

tr(tc(1, rnc,1, rnc,2), tnc,1(rnc,1, rnc,2), tnc,2(1, rnc,1, rnc,2)). (48)

For simplicity’s sake, let �c
c, �nc,1

c , �nc,2
c , �nc,1

nc,1, �nc,2
nc,1, �c

nc,2, �nc,1
nc,2, �nc,2

nc,2, �c
r , �nc,1

r , and �nc,2
r be such that (44), (45),

(46), and (47) can, respectively, be rewritten as

tc(x, y, z) = �c
cx + �nc,1

c y + �nc,2
c z, (49)
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tnc,1(y, z) = �nc,1
nc,1y + �nc,2

nc,1z, (50)

tnc,2(x, y, z) = �c
nc,2x + �nc,1

nc,2y + �nc,2
nc,2z, (51)

and

tr(x, y, z) = �c
r x + �nc,1

r y + �nc,2
r z. (52)

Then, introducing the row vector A = [
�c

r �nc,1
r �nc,2

r

]
and the matrix

B =

⎡
⎢⎢⎣

�c
c �nc,1

c �nc,2
c

0 �nc,1
nc,1 �nc,2

nc,1

�c
nc,2 �nc,1

nc,2 �nc,2
nc,2

⎤
⎥⎥⎦ ,

we have that the expected number of �-neighbors of a randomly chosen node in GCCD , which for ��1 we denote by
Z

(�)
GCCD

, is

Z
(�)
GCCD

= AB�−1

⎡
⎣ 1

rnc,1
rnc,2

⎤
⎦ . (53)

(The reader should check that (53) yields the ZGCCD
of (26) for � = 1, and also that it becomes (48) for � = 2.)

We are now left with the task of finally obtaining LGCCD
. This can only be achieved numerically, and to this end

we resort to the eigenvalues (say �1, �2, and �3, which we assume are all distinct 2 ) and corresponding eigenvectors
(v1, v2, and v3) of B. If V is the matrix whose columns are v1, v2, and v3, and � the matrix having diagonal elements
�1, �2, and �3 with 0’s everywhere else, then B can be diagonalized into � via

� = V −1BV, (54)

which can be equivalently expressed as

B = V �V −1 (55)

and used to obtain the B�−1 of (53) as B�−1 = V ��−1V −1 [12].
Proceeding in a manner analogous to the one that led to (40), we can then obtain LGCCD

by numerically solving the
equation

LGCCD∑
�=1

Z
(�)
GCCD

= n�D − 1, (56)

which, by (53), is equivalent to

AV

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
LGCCD

1 − 1

�1 − 1
0 0

0
�
LGCCD

2 − 1

�2 − 1
0

0 0
�
LGCCD

3 − 1

�3 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

V −1

⎡
⎣ 1

rnc,1
rnc,2

⎤
⎦ = n�D − 1. (57)

2 This has proven true in all the experimental scenarios of Section 3, so we dwell on the matter no further.
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3. Simulation results

In addition to our mathematical analysis of Section 2, and seeking to validate it experimentally, we have carried out
simulations of the uniform approach to the construction of D. Also, and notwithstanding the fact that our analysis has
not included the degree-based approach, we have extended our simulations to cover it as well. Each of our simulations is
based on disseminating I on random graphs, which are always generated to be above the corresponding phase transition.
This allows the simulation to be constrained to operate within the graph’s largest connected component, which almost
surely is a giant connected component.

We have considered two random-graph models. The first model corresponds to the classical model of Erdős and
Rényi [9], in which G is constructed on n nodes by letting each of the possible n(n − 1)/2 edges exist with con-
stant probability z/(n − 1) for 0 < z�n − 1. As a result, G has node degrees distributed according to a Poisson
distribution, that is, the probability that a node has degree a is PG(a) = e−zza/a! [5]. For Poisson-distributed node
degrees, it follows from (2) that the graph is above the phase transition if and only if z > 1, since ZG = z and
〈K2

G〉 = z2 + z.
We have concentrated on analyzing the behavior of Pn, Pm, ZD,GCCG

, and Pt for 1�z�10 and � = 0.10, 0.25, 0.50,

0.75, 1.00. To this end, and for each value of z, we generated 300 random graphs with n = 10 000 nodes, and
then constructed two instances of D for each value of �, one following the uniform approach and the other the
degree-based approach. On each of the instances, we then conducted 1000 disseminations by randomly choos-
ing an originator from among the nodes in the largest connected component of G. At the end, we averaged the
quantities of interest overall to obtain Pn, Pm, ZD,GCCG

, and Pt . (Note that obtaining ZD,GCCG
does not depend

on any dissemination, but rather only on the available G and D instances. The same is in principle also true of
Pt , but we simulate disseminations by breadth-first search from the originator and Pt is then approximated along
the way.)

Fig. 1 shows simulation results for random graphs having Poisson-distributed node degrees. Parts (a–d), concerning
the uniform approach, show an excellent agreement between analytical and simulation results, with only a slight
deviation in part (d), which is in all likelihood to be attributed to the approximations made in Section 2.4. The plots
for Pn (Fig. 1(a, e)) evidence the expected superiority of the degree-based approach over the uniform approach, since
in the former case Pn approaches 1 rapidly as z is increased, more or less regardless of � (in the uniform approach,
this only seems to happen for z < 10 when ��0.50). A closer examination of the data for the degree-based approach,
say for z = 5 and � = 0.50, reveals Pn ≈ 0.998, Pm ≈ 1.24, ZD,GCCG

≈ 2.48, and Pt ≈ 1.76. What this means
is that, using roughly 1.24 times as many edges as a spanning tree and paths that, on average, are greater than those
of G by a factor of only 1.76, the dissemination subgraph reaches almost all the nodes of the network while having a
relatively low average node degree. Comparing the two approaches, it is curious to note that the plots of Pm (Fig. 1(b,
f)) are very similar to each other, the same holding for those of ZD,GCCG

(Fig. 1(c, g)), which indicates that the number
of edges in the dissemination subgraph is quite independent of whether one approach is used or the other. However,
the difference between the Pn plots demonstrates that the choices made by the nodes in the degree-based approach
somehow lead the edges to end up deployed in such a manner as to favor the connectedness of the dissemination
subgraph strongly.

The other random-graph model we have considered is the one in which node degrees are distributed according to a
power law. The probability that a node in G has degree a is in this case, and for n → ∞, given by PG(a) = a−	/
(	),
where 	 > 1 is a parameter and 
(x) is the Riemann zeta function [18], that is, 
(x) = ∑∞

y=1 y−x . Then we have

ZG = 
(	 − 1)/
(	) and 〈K2
G〉 = 
(	 − 2)/
(	), so solving (2) numerically yields 	 < 3.47 as the condition for

G to be above the phase transition. We have performed simulations for 2�	�3 in the same way as we did for the
Poisson case.

Random graphs with degrees thus distributed can be generated in two phases. First the degrees a1, a2, . . . , an of
the n nodes, constituting the graph’s so-called degree sequence, are sampled repeatedly from the power law until∑n

i=1 ai comes out even. Then
∑n

i=1 ai labeled balls are put inside an imaginary urn, where exactly ai of the balls
are labeled i, for 1� i�n. A pair of balls, say of labels u and v, is then withdrawn from the urn and the edge
(u, v) is added to the graph; this process is repeated until the urn becomes empty. This algorithm clearly generates
a multigraph, where self-loops and multiple edges are allowed to exist. What we do as a last step is to discard such
undesirable edges, which at the end yields a random graph whose degree sequence is an approximation of the one
sampled.
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Fig. 1. Simulation results for the uniform (a–d) and the degree-based (e–h) approach on random graphs having Poisson-distributed node degrees.
The plots show Pn (a, e), Pm (b, f), ZD,GCCG

(c, g), and Pt (d, h) for � = 0.10, 0.25, 0.50, 0.75, 1.00. Solid lines give the analytical predictions of
Section 2.

Fig. 2 shows simulation results for random graphs having node degrees distributed according to a power law. The
plots for the uniform approach (Fig. 2(a–d)) show poor results, as Pn stays clear of 1 for most values of 	, but they
do nonetheless corroborate the analytical predictions of Section 2 in parts (a), (b), and (c). For part (d) no analytical
result is given, since Eqs. (39) and (53), as similarly observed in [16], do not converge. The plots for the degree-
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Fig. 2. Simulation results for the uniform (a–d) and the degree-based (e–h) approach on random graphs having node degrees distributed as a power
law. The plots show Pn (a, e), Pm (b, f), ZD,GCCG

(c, g), and Pt (d, h) for � = 0.10, 0.25, 0.50, 0.75, 1.00. Solid lines give the analytical predictions
of Section 2.

based approach (Fig. 2(e–h)), in turn, show excellent results for 	 < 2.4. In this range, Pn ≈ 1 and both Pm and Pt
are slightly above 1, regardless of the value of �, thus demonstrating that the dissemination subgraph is very close
to a spanning tree. As for ZD,GCCG

, it stays modestly valued below roughly 2.25 throughout the entire spectrum of
	 values.



A.O. Stauffer, V.C. Barbosa / Theoretical Computer Science 355 (2006) 80 –95 93

4. Resilience and adaptability

4.1. Resilience to node and link failures

Let � be the probability that a given transmission by a node over a link is successful. This probability is the product
of two others, namely that the node is operational and that the link is operational. We now consider the problem of
using a dissemination subgraph to disseminate information when each transmission has a failure probability of 1 − �.
(Note, before we begin, that a simple protocol employing acknowledgement messages to ensure reliable transmissions
can be used when � is substantially low. In spite of this fact, our interest is to verify what happens to the value of Pn
when a failure may occur and no additional message is sent to make up for it.)

Let us consider what happens to GCCG when failures may occur. For such, let G′ be the graph obtained from G by
independently removing every edge with probability 1 − �. Employing the same nomenclature as in Section 2, a node
of G′ is outside GCCG′ if and only if each of its neighbors in G is a dead end with respect to it in G′. Considering a
randomly chosen node u, let q ′ be the probability that a given neighbor v of u in G is a dead end with respect to it in
G′. We have

q ′ =
n−1∑
b=1

bPG(b)

ZG

(1 − � + �q ′)b−1, (58)

where (1 − � + �q ′)b−1 indicates, when b is the degree of v, that each of the neighbors of v in G that are not u either is
not a neighbor of v in G′ or is itself a dead end with respect to v in G′. So, if �G′ is the expected size of GCCG′ , we
obtain

�G′ = 1 −
n−1∑
a=0

PG(a)(q ′)a. (59)

We have carried out simulations on random graphs having n = 10 000 and degrees distributed according to either a
Poisson distribution with 1�z�10 or a power law with 2�	�3. Our aim has been to analyze Pn in the degree-based
approach when � = 0.95, i.e., when each transmission has a 0.95 probability of success. These simulations have
followed the same methodology as in Section 3.

Notice that an upper bound on Pn when � > 0 can be obtained by considering a dissemination on all the edges of G′.
Such a bound is thus �2

G′/�2
G. The degree-based approach to the construction of D will then be as resilient to failures

as Pn is close to �2
G′/�2

G.
Fig. 3 shows the results for � = 0.50, 0.75, 1.00 and provides an indication of how resilient the dissemination

subgraph is to transmission failures. Clearly, in both the Poisson case (part (a) of the figure) and the power-law case
(part (b)), Pn approaches �2

G′/�2
G as G gets denser (i.e., higher z or lower 	, as the case may be).
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Fig. 3. Simulation results of the degree-based approach with � = 0.95 on random graphs having Poisson (a) and power-law (b) node-degree
distributions for � = 0.50, 0.75, 1.00. Solid lines give the analytical predictions for �2
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G.
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4.2. Adaptability to topology changes

We now take a brief look at how a dissemination subgraph D can be made to cope with dynamic topology changes
in G. As customary in such cases, we model the addition or removal of a node as, respectively, the addition or removal
of the edges that are incident to it. It then suffices that we consider the addition or removal of single edges, in which
context we further assume that the two end nodes of the edge in question are capable of detecting its appearance or
disappearance instantaneously.

The crux of this adaptability issue is that D, being constructed by strictly local actions by the nodes, can undergo
changes that affect only a small vicinity of the edge that is being added or removed (this is to be contrasted with other
situations—cf., e.g., [1]—in which the impact of topological changes spreads much more widely). Let (u, v) be an
edge that is added to or removed from G. In the uniform approach, only u and v need remake their choices; in the
degree-based approach, this holds for u and v, and also for their neighbors (whose choices are affected by the degree
of u or v, as the case may be).

5. Conclusions

In this paper we have considered the use of a spanning subgraph for disseminating a piece of information, originally
known to a single node, to all the other nodes of an unstructured network. We have introduced two local heuristics,
referred to as the uniform and the degree-based approach, for building what we call a dissemination subgraph. As
we argued toward the end of the paper, the heuristics’ intrinsically local nature leads to a degree of resilience of the
dissemination subgraph to failures, and also to a relative ease of adaptation to topological changes.

We have contributed an innovative mathematical analysis of the uniform approach, one that we hope can be extended
to the degree-based approach as well, and also inspire the mathematical analysis of similar problems. Our simulations
on random graphs corroborate our analytical results for the uniform approach and demonstrate the efficacy, in terms of
some relevant indicators, of the degree-based approach for networks in which node degrees are distributed according
to a Poisson distribution or to a power law.

We find it remarkable that independent, strictly local decisions by the nodes of a complex network are capable of
giving rise to a global structure that in many cases comes very near a subgraph with, on average, important properties
related to its use as a substrate for information dissemination. These properties include the ability to reach nearly every
node in the originator’s connected component in the network, and do so with relatively modest requirements concerning
the overall number of messages and per-node transmission bandwidth. They also include stretching paths only by a
small factor when compared to the corresponding paths in the network.
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