155 research outputs found

    Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases.

    Get PDF
    A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solutions for increasing development of therapeutics for central nervous system metastases. A key issue identified at this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain metastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The "minimum standard" recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion recovery (IR)-prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; (iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An "ideal" protocol is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfusion parameters are given

    Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

    Get PDF
    A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR system

    Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

    Full text link
    A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR systems

    BioDMET: a physiologically based pharmacokinetic simulation tool for assessing proposed solutions to complex biological problems

    Get PDF
    We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter-species scaling. While developing a tool to aid imaging agent and drug development, we aimed at accelerating the acceptance and broad use of PBPK modeling by providing a free mechanistic PBPK software that is user friendly, easy to adapt to a wide range of problems even by non-programmers, provided with ready-to-use parameterized models and benchmarking data collected from the peer-reviewed literature

    Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized phase III BEACON trial

    Get PDF
    Purpose: Conventional chemotherapy has limited activity in patients with breast cancer and brain metastases (BCBM). Etirinotecan pegol (EP), a novel long-acting topoisomerase-1 inhibitor, was designed using advanced polymer technology to preferentially accumulate in tumor tissue including brain metastases, providing sustained cytotoxic SN38 levels. Methods: The phase 3 BEACON trial enrolled 852 women with heavily pretreated locally recurrent or metastatic breast cancer between 2011 and 2013. BEACON compared EP with treatment of physician’s choice (TPC; eribulin, vinorelbine, gemcitabine, nab-paclitaxel, paclitaxel, ixabepilone, or docetaxel) in patients previously treated with anthracycline, taxane, and capecitabine, including those with treated, stable brain metastases. The primary endpoint, overall survival (OS), was assessed in a pre-defined subgroup of BCBM patients; an exploratory post hoc analysis adjusting for the diagnosis-specific graded prognostic assessment (GPA) index was also conducted. Results: In the trial, 67 BCBM patients were randomized (EP, n = 36; TPC, n = 31). Treatment subgroups were balanced for baseline characteristics and GPA indices. EP was associated with a significant reduction in the risk of death (HR 0.51; P < 0.01) versus TPC; median OS was 10.0 and 4.8 months, respectively. Improvement in OS was observed in both poorer and better GPA prognostic groups. Survival rates at 12 months were 44.4% for EP versus 19.4% for TPC. Consistent with the overall BEACON population, fewer patients on EP experienced grade ≥3 toxicity (50 vs. 70%). Conclusions: The significant improvement in survival in BCBM patients provides encouraging data for EP in this difficult-to-treat subgroup of patients. A phase three trial of EP in BCBM patients is underway (ClinicalTrials.gov NCT02915744)
    corecore