14,926 research outputs found
What brakes the Crab pulsar?
Optical observations provide convincing evidence that the optical phase of
the Crab pulsar follows the radio one closely. Since optical data do not depend
on dispersion measure variations, they provide a robust and independent
confirmation of the radio timing solution. The aim of this paper is to find a
global mathematical description of Crab pulsar's phase as a function of time
for the complete set of published Jodrell Bank radio ephemerides (JBE) in the
period 1988-2014. We apply the mathematical techniques developed for analyzing
optical observations to the analysis of JBE. We break the whole period into a
series of episodes and express the phase of the pulsar in each episode as the
sum of two analytical functions. The first function is the best-fitting local
braking index law, and the second function represents small residuals from this
law with an amplitude of only a few turns, which rapidly relaxes to the local
braking index law. From our analysis, we demonstrate that the power law index
undergoes "instantaneous" changes at the time of observed jumps in rotational
frequency (glitches). We find that the phase evolution of the Crab pulsar is
dominated by a series of constant braking law episodes, with the braking index
changing abruptly after each episode in the range of values between 2.1 and
2.6. Deviations from such a regular phase description behave as oscillations
triggered by glitches and amount to fewer than 40 turns during the above
period, in which the pulsar has made more than 2.0e10 turns. Our analysis does
not favor the explanation that glitches are connected to phenomena occurring in
the interior of the pulsar. On the contrary, timing irregularities and changes
in slow down rate seem to point to electromagnetic interaction of the pulsar
with the surrounding environment.Comment: 11 pages, 8 figures, 3 tables; accepted for publication in Astronomy
& Astrophysic
Growth and first sexual maturation size of Gymnotus carapo (Linnaeus, 1758) in the Lobo reservoir (state of Sao Paulo, Brazil) (Pisces, Gymnotidae)
Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam
We study the properties of the Fraunhofer diffraction patterns produced by
Gaussian beams crossing spiral phase plates. We show, both analytically and
numerically, that off-axis displacements of the input beam produce asymmetric
diffraction patterns. The intensity profile along the direction of maximum
asymmetry shows two different peaks. We find that the intensity ratio between
these two peaks decreases exponentially with the off-axis displacement of the
incident beam, the decay being steeper for higher strengths of the optical
singularity of the spiral phase plate. We analyze how this intensity ratio can
be used to measure small misalignments of the input beam with a very high
precision.Comment: 8 pages, 4 figures. Accepted for publication in PR
Breaking the electroweak symmetry and supersymmetry by a compact extra dimension
We revisit in some more detail a recent specific proposal for the breaking of
the electroweak symmetry and of supersymmetry by a compact extra dimension.
Possible mass terms for the Higgs and the matter hypermultiplets are considered
and their effects on the spectrum analyzed. Previous conclusions are reinforced
and put on firmer ground.Comment: 25 pages, LaTeX, 9 eps figure
Detecting Gaussian entanglement via extractable work
We show how the presence of entanglement in a bipartite Gaussian state can be
detected by the amount of work extracted by a continuos variable Szilard-like
device, where the bipartite state serves as the working medium of the engine.
We provide an expression for the work extracted in such a process and
specialize it to the case of Gaussian states. The extractable work provides a
sufficient condition to witness entanglement in generic two-mode states,
becoming also necessary for squeezed thermal states. We extend the protocol to
tripartite Gaussian states, and show that the full structure of inseparability
classes cannot be discriminated based on the extractable work. This suggests
that bipartite entanglement is the fundamental resource underpinning work
extraction.Comment: 12 pages, 8 figure
- …
