17 research outputs found

    Rainbow Vectors for Broad-Range Bacterial Fluorescence Labeling

    Get PDF
    Since their discovery, fluorescent proteins have been widely used to study protein function, localization or interaction, promoter activity and regulation, drug discovery or for non-invasive imaging. They have been extensively modified to improve brightness, stability, and oligomerization state. However, only a few studies have focused on understanding the dynamics of fluorescent proteins expression in bacteria. In this work, we developed a set plasmids encoding 12 fluorescent proteins for bacterial labeling to facilitate the study of pathogen-host interactions. These broad-spectrum plasmids can be used with a wide variety of Gram-negative microorganisms including Escherichia coli, Pseudomonas aeruginosa, Burkholderia cepacia, Bordetella bronchiseptica, Shigella flexneri or Klebsiella pneumoniae. For comparison, fluorescent protein expression and physical characteristics in Escherichia coli were analyzed using fluorescence microscopy, flow cytometry and in vivo imaging. Fluorescent proteins derived from the Aequorea Victoria family showed high photobleaching, while proteins form the Discosoma sp. and the Fungia coccina family were more photostable for microscopy applications. Only E2-Crimson, mCherry and mKeima were successfully detected for in vivo applications. Overall, E2-Crimson was the fastest maturing protein tested in E. coli with the best overall performance in the study parameters. This study provides a unified comparison and comprehensive characterization of fluorescent protein photostability, maturation and toxicity, and offers general recommendations on the optimal fluorescent proteins for in vitro and in vivo applications

    Analysis of the In Vivo Transcriptome of Bordetella pertussis during Infection of Mice

    Get PDF
    Bordetella pertussis causes the disease whooping cough through coordinated control of virulence factors by the Bordetella virulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describe in vitro gene expression profiles of B. pertussis and other pathogens. In previous studies, we have analyzed the in vitro gene expression profiles of B. pertussis, and we hypothesize that the infection transcriptome profile in vivo is significantly different from that under laboratory growth conditions. To study the infection transcriptome of B. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing the in vitro and in vivo gene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical for B. pertussis survival in vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile of B. pertussisduring infection, and this method will facilitate efforts to understand how this pathogen causes infection

    Intranasal Acellular Pertussis Vaccine Provides Mucosal Immunity and Protects Mice from Bordetella Pertussis

    Get PDF
    Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation

    Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains

    Get PDF
    Background Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized. Results This strain displays phenotypes that have been associated with chronic respiratory infections in CF including alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels to β-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a 6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. aeruginosa genome sequences. Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids and lipids is up-regulated when compared to PAO1 and metabolic modeling identified further potential differences between PAO1 and PAHM4. Conclusions This work provides insights into the potential differential adaptation of this bacterium to the lung of patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the development of disease-appropriate treatment strategies for P. aeruginosa infections

    Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from <i>Bordetella pertussis</i>

    Get PDF
    Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula

    Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains

    Get PDF

    Analysis of the In Vivo Transcriptome of Bordetella pertussis during Infection of Mice

    Get PDF
    In vitro growth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” of B. pertussis in the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.Bordetella pertussis causes the disease whooping cough through coordinated control of virulence factors by the Bordetella virulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describe in vitro gene expression profiles of B. pertussis and other pathogens. In previous studies, we have analyzed the in vitro gene expression profiles of B. pertussis, and we hypothesize that the infection transcriptome profile in vivo is significantly different from that under laboratory growth conditions. To study the infection transcriptome of B. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing the in vitro and in vivo gene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical for B. pertussis survival in vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile of B. pertussis during infection, and this method will facilitate efforts to understand how this pathogen causes infection

    Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production

    Get PDF
    Pseudomonas aeruginosa employs numerous, complex regulatory ele- ments to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial viru- lence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous ex- pression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro. AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concen- tration per se. AlgR phosphorylation effects were also examined in a Drosophila melano- gaster feeding, murine acute pneumonia, and punch wound infection models. Abroga- tion of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection. IMPORTANCE Pyoverdine and pyocyanin production are well-known P. aeruginosa virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state in- versely controls pyoverdine and pyocyanin production and that this control is car- bon source dependent. P. aeruginosa expressing AlgR D54N, mimicking the constitu- tively unphosphorylated state, produced more pyocyanin than cells expressing wild- type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the prrf2 small regulatory RNA and the pyoverdine sigma factor, PvdS. Ab- rogating pyoverdine or pyocyanin gene expression has been shown to attenuate vir- ulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenu- ates virulence in three different models, a Drosophila melanogaster feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR- dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study

    Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production

    No full text
    Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro. AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se. AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection

    SARS-CoV-2 Delta variant induces enhanced pathology and inflammatory responses in K18-hACE2 mice.

    No full text
    The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines
    corecore