720 research outputs found

    Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies

    Get PDF
    Here we aimed at finding the neural correlates of the general aspect of visual aesthetic experience (VAE) and those more strictly correlated with the content of the artworks. We applied a general activation likelihood estimation (ALE) meta-analysis to 47 fMRI experiments described in 14 published studies. We also performed four separate ALE analyses in order to identify the neural substrates of reactions to specific categories of artworks, namely portraits, representation of real-world-visual-scenes, abstract paintings, and body sculptures. The general ALE revealed that VAE relies on a bilateral network of areas, and the individual ALE analyses revealed different maximal activation for the artworks' categories as function of their content. Specifically, different content-dependent areas of the ventral visual stream are involved in VAE, but a few additional brain areas are involved as well. Thus, aesthetic-related neural responses to art recruit widely distributed networks in both hemispheres including content-dependent brain areas of the ventral visual stream. Together, the results suggest that aesthetic responses are not independent of sensory, perceptual, and cognitive processe

    USING WRB TO MAP THE SOIL SYSTEMS OF ITALY

    Get PDF
    Aim of this work was to test the 2010 version of the WRB soil classification for compilating a map of the soil systems of Italy at 1:500,000 scale. The source of data was the national geodatabase storing information on 1,414 Soil Typological Units (STUs). Though, basically, we followed WRB criteria to prioritize soil qualifiers, however, it was necessary to work out an original methodology in the map legend representation to reproduce the high variability inside each delineation meanwhile avoiding any loss of information. Each map unit may represent a combination of three codominant STUs at the most. Dominant STUs were assessed summing up the occurrence of STUs in the Land Components (LCs) of every soil system, where each LC is a specific combination of morphology, lithology and land cover. STUs were classified according to the WRB soil classification system, at the third level, that is, reference soil group and first two qualifiers, when possible. Since the large number of delineations, map units grouping was needed to make the map more legible. Legend colours were organized according to soil regions groups firstly, then by considering the highest level of soil classification, so resulting a nidificated legend. The map showed 3,357 polygons and 704 map units. The most common STU were Calcaric Cambisols, by far followed by Calcaric Regosols, Eutric Cambisols, Haplic Calcisols, Vertic Cambisols, Cutanic Luvisols, Leptic Pheozems, Chromic Luvisols, Dystric Cambisols, Fluvic Cambisols, and others STUs belonging to almost all the WRB soil references. Keywords: geodatabase, soil system

    Hypoxia selects bortezomib-resistant stem cells of chronic myeloid leukemia.

    Get PDF
    We previously demonstrated that severe hypoxia inhibits growth of Chronic Myeloid Leukemia (CML) cells and selects stem cells where BCR/Abl(protein) is suppressed, although mRNA is not, so that hypoxia-selected stem cells, while remaining leukemic, are independent of BCR/Abl signaling and thereby refractory to Imatinib-mesylate. The main target of this study was to address the effects of the proteasome inhibitor Bortezomib (BZ) on the maintenance of stem or progenitor cells in hypoxic primary cultures (LC1), by determining the capacity of LC1 cells to repopulate normoxic secondary cultures (LC2) and the kinetics of this repopulation. Unselected K562 cells from day-2 hypoxic LC1 repopulated LC2 with rapid, progenitor-type kinetics; this repopulation was suppressed by BZ addition to LC1 at time 0, but completely resistant to day-1 BZ, indicating that progenitors require some time to adapt to stand hypoxia. K562 cells selected in hypoxic day-7 LC1 repopulated LC2 with stem-type kinetics, which was largely resistant to BZ added at either time 0 or day 1, indicating that hypoxia-selectable stem cells are BZ-resistant per se, i.e. before their selection. Furthermore, these cells were completely resistant to day-6 BZ, i.e. after selection. On the other hand, hypoxia-selected stem cells from CD34-positive cells of blast-crisis CML patients appeared completely resistant to either time-0 or day-1 BZ. To exploit in vitro the capacity of CML cells to adapt to hypoxia enabled to detect a subset of BZ-resistant leukemia stem cells, a finding of particular relevance in light of the fact that our experimental system mimics the physiologically hypoxic environment of bone marrow niches where leukemia stem cells most likely home and sustain minimal residual disease in vivo. This suggests the use of BZ as an enhanced strategy to control CML. in particular to prevent relapse of disease, to be considered with caution and to need further deepening

    Relevance of the Lin's and Host hydropedological models to predict grape yield and wine quality

    Get PDF
    The adoption of precision agriculture in viticulture could be greatly enhanced by the diffusion of straightforward and easy to be applied hydropedological models, able to predict the spatial variability of available soil water. The Lin's and Host hydropedological models were applied to standard soil series descriptions and hillslope position, to predict the distribution of hydrological functional units in two vineyard and their relevance for grape yield and wine quality. A three-years trial was carried out in Chianti (Central Italy) on Sangiovese. The soils of the vineyards differentiated in structure, porosity and related hydropedological characteristics, as well as in salinity. Soil spatial variability was deeply affected by earth movement carried out before vine plantation. Six plots were selected in the different hydrological functional units of the two vineyards, that is, at summit, backslope and footslope morphological positions, to monitor soil hydrology, grape production and wine quality. Plot selection was based upon a cluster analysis of local slope, topographic wetness index (TWI), and cumulative moisture up to the root limiting layer, appreciated by means of a detailed combined geophysical survey. Water content, redox processes and temperature were monitored, as well as yield, phenological phases, and chemical analysis of grapes. The isotopic ratio δ<sup>13</sup>C was measured in the wine ethanol upon harvesting to evaluate the degree of stress suffered by vines. The grapes in each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing. <br></br> The results demonstrated that the combined application of the two hydropedological models can be used for the prevision of the moisture status of soils cultivated with grape during summertime in Mediterranean climate. As correctly foreseen by the models, the amount of mean daily transpirable soil water (TSW) during the growing season differed considerably between the vineyards and increased significantly along the three positions on slope in both vineyards. The water accumulation along slope occurred in every year, even during the very dry 2006. The installation of indicators of reduction in soils (IRIS) tubes allowed confirmation of the occurrence of reductive processes in the most shallow soil. <br></br> Both Sangiovese grape yield and quality of wine were influenced by the interaction between TSW content and salinity, sometimes contrary to expectations. Therefore, the studied hydropedological models were not relevant to predict grape yield and wine quality in all the hydrological functional units. The diffusion of hydropedological models in precision viticulture could be boosted considering salinity along with topography and soil hydrological characteristics

    severe insulin resistence in disguise: a familial case of reactive hypoglycemia associated with a novel heterozygous INSR mutation

    Get PDF
    AIM: Hypoglycemia in childhood is very rare and can be caused by genetic mutations or insulin-secreting neoplasms. Postprandial hypoglycemia has previously been associated with insulin receptor (INSR) gene mutations. We aimed to identify the cause of postprandial hypoglycemia in a 10-year-old boy. SUBJECTS: We studied the symptomatic proband and his apparently asymptomatic mother and elder brother. All of them were lean. METHODS: Metabolic screening of the proband included a 5-hour oral glucose tolerance test (OGTT), angio-magnetic resonance imaging, and 18 F-dihydroxyphenylalanine positron emission tomography/computed tomography imaging of the pancreas. INSR gene sequencing and in vitro functional studies of a novel INSR mutation were also undertaken. RESULTS: Fasting hyperinsulinemia was detected during metabolic screening, and 5-hour OGTT showed hypoglycemia at 240' in the proband, his mother, and brother. Pancreatic imaging showed no evidence of neoplasia. Acanthosis nigricans with high fasting insulin levels in the proband suggested severe insulin resistance and prompted INSR gene sequencing, which revealed the novel, heterozygous p.Phe1213Leu mutation in the patient and his family members. In vitro studies showed that this mutation severely impairs insulin receptor function by abolishing tyrosine kinase activity and downstream insulin signaling. CONCLUSIONS: The identification of etiological cause of hypoglycemia in childhood may be challenging. The combination of fasting hyperinsulinemia with acanthosis nigricans in a lean subject with hypoglycemia suggests severe insulin resistance and warrants INSR gene screening

    Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects

    Get PDF
    Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), are a common cause of neonatal diabetes. We identified a novel KCNJ11 mutation, R50Q, that causes permanent neonatal diabetes (PNDM) without neurological problems. We investigated the functional effects this mutation and another at the same residue (R50P) that led to PNDM in association with developmental delay. Wild-type or mutant Kir6.2/SUR1 channels were examined by heterologous expression in Xenopus oocytes. Both mutations increased resting whole-cell currents through homomeric and heterozygous K(ATP) channels by reducing channel inhibition by ATP, an effect that was larger in the presence of Mg(2+). However the magnitude of the reduction in ATP sensitivity (and the increase in the whole-cell current) was substantially larger for the R50P mutation. This is consistent with the more severe phenotype. Single-R50P channel kinetics (in the absence of ATP) did not differ from wild type, indicating that the mutation primarily affects ATP binding and/or transduction. This supports the idea that R50 lies in the ATP-binding site of Kir6.2. The sulfonylurea tolbutamide blocked heterozygous R50Q (89%) and R50P (84%) channels only slightly less than wild-type channels (98%), suggesting that sulfonylurea therapy may be of benefit for patients with either mutation
    • …
    corecore