61 research outputs found

    A Universal Bleeding Risk Score in Native and Allograft Kidney Biopsies: A French Nationwide Cohort Study

    Get PDF
    BackgroundThe risk of bleeding after percutaneous biopsy in kidney transplant recipients is usually low but may vary. A pre-procedure bleeding risk score in this population is lacking.MethodsWe assessed the major bleeding rate (transfusion, angiographic intervention, nephrectomy, hemorrhage/hematoma) at 8 days in 28,034 kidney transplant recipients with a kidney biopsy during the 2010-2019 period in France and compared them to 55,026 patients with a native kidney biopsy as controls.ResultsThe rate of major bleeding was low (angiographic intervention: 0.2%, hemorrhage/hematoma: 0.4%, nephrectomy: 0.02%, blood transfusion: 4.0%). A new bleeding risk score was developed (anemia = 1, female gender = 1, heart failure = 1, acute kidney failure = 2 points). The rate of bleeding varied: 1.6%, 2.9%, 3.7%, 6.0%, 8.0%, and 9.2% for scores 0 to 5, respectively, in kidney transplant recipients. The ROC AUC was 0.649 (0.634-0.664) in kidney transplant recipients and 0.755 (0.746-0.763) in patients who had a native kidney biopsy (rate of bleeding: from 1.2% for score = 0 to 19.2% for score = 5).ConclusionsThe risk of major bleeding is low in most patients but indeed variable. A new universal risk score can be helpful to guide the decision concerning kidney biopsy and the choice of inpatient vs. outpatient procedure both in native and allograft kidney recipients

    HEPScore: A new CPU benchmark for the WLCG

    Full text link
    HEPScore is a new CPU benchmark created to replace the HEPSPEC06 benchmark that is currently used by the WLCG for procurement, computing resource pledges and performance studies. The development of the new benchmark, based on HEP applications or workloads, has involved many contributions from software developers, data analysts, experts of the experiments, representatives of several WLCG computing centres, as well as the WLCG HEPScore Deployment Task Force. In this contribution, we review the selection of workloads and the validation of the new HEPScore benchmark.Comment: Paper submitted to the proceedings of the Computing in HEP Conference 2023, Norfol

    Leber Congenital Amaurosis: Comprehensive Survey of the Genetic Heterogeneity, Refinement of the Clinical Definition, and Genotype-Phenotype Correlations as a Strategy for Molecular Diagnosis

    Get PDF
    Communicated by Jean-Claude Kaplan Leber congenital amaurosis (LCA) is the earliest and most severe form of all inherited retinal dystrophies, responsible for congenital blindness. Disease-associated mutations have been hitherto reported in seven genes. These genes are all expressed preferentially in the photoreceptor cells or the retinal pigment epithelium but they are involved in strikingly different physiologic pathways resulting in an unforeseeable physiopathologic variety. This wide genetic and physiologic heterogeneity that could largely increase in the coming years, hinders the molecular diagnosis in LCA patients. The genotyping is, however, required to establish genetically defined subgroups of patients ready for therapy. Here, we report a comprehensive mutational analysis of the all known genes in 179 unrelated LCA patients, including 52 familial and 127 sporadic (27/127 consanguineous) cases. Mutations were identified in 47.5% patients. GUCY2D appeared to account for most LCA cases of our series (21.2%), followed by CRB1 (10%), RPE65 (6.1%), RPGRIP1 (4.5%), AIPL1 (3.4%), TULP1 (1.7%), and CRX (0.6%). The clinical history of all patients with mutations was carefully revisited to search for phenotype variations. Sound genotype-phenotype correlations were found that allowed us to divide patients into two main groups. The first one includes patients whose symptoms fit the traditional definition of LCA, i.e., congenital or very early cone-rod dystrophy, while the second group gathers patients affected with severe yet progressive rodcone dystrophy. Besides, objective ophthalmologic data allowed us to subdivide each group into two subtypes. Based on these findings, we have drawn decisional flowcharts directing the molecular analysis of LCA genes in a given case. These flowcharts will hopefully lighten the heavy task of genotyping new patients but only if one has access to the most precise clinical history since birth

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The economic cost of control of the invasive yellow-legged Asian hornet

    No full text
    Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet Vespa velutina nigrithorax is rapidly spreading through France and Europe. Economic assessments regarding the costs of invasive species often reveal important costs from required control measures or damages. Despite the rapid invasion of the Asian yellow-legged hornet in Europe and potential damage to apiculture and pollination services, the costs of its invasion have not been evaluated yet. Here we aimed at studying the costs arising from the Asian yellow-legged hornet invasion by providing the first estimate of the control cost. Today, the invasion of the Asian yellow-legged hornet is mostly controlled by nest destruction. We estimated that nest destruction cost €23 million between 2006 and 2015 in France. The yearly cost is increasing as the species keeps spreading and could reach €11.9 million in France, €9.0 million in Italy and €8.6 million in the United Kingdom if the species fills its current climatically suitable distribution. Although more work will be needed to estimate the cost of the Asian yellow-legged hornet on apiculture and pollination services, they likely exceed the current costs of control with nest destruction. It could thus be worth increasing control efforts by aiming at destroying a higher percentage of nests

    The economic cost of control of the invasive yellow-legged Asian hornet

    No full text
    Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet Vespa velutina nigrithorax is rapidly spreading through France and Europe. Economic assessments regarding the costs of invasive species often reveal important costs from required control measures or damages. Despite the rapid invasion of the Asian yellow-legged hornet in Europe and potential damage to apiculture and pollination services, the costs of its invasion have not been evaluated yet. Here we aimed at studying the costs arising from the Asian yellow-legged hornet invasion by providing the first estimate of the control cost. Today, the invasion of the Asian yellow-legged hornet is mostly controlled by nest destruction. We estimated that nest destruction cost €23 million between 2006 and 2015 in France. The yearly cost is increasing as the species keeps spreading and could reach €11.9 million in France, €9.0 million in Italy and €8.6 million in the United Kingdom if the species fills its current climatically suitable distribution. Although more work will be needed to estimate the cost of the Asian yellow-legged hornet on apiculture and pollination services, they likely exceed the current costs of control with nest destruction. It could thus be worth increasing control efforts by aiming at destroying a higher percentage of nests

    Méthodologie et résultats d’application de la tomographie électrique de résistivité par courant continu pour l’exploration hydrogéologique des aquifères discontinus en domaine de socle

    No full text
    International audienceLe BRGM réalise et supervise des explorations géophysiques des ressources en eau en domaine de socle, et participe à des projets de recherche visant à la caractérisation de ces milieux sur des terrains d'application variés à travers le monde. Depuis les années 1990, les méthodes classiques du traîné et du sondage électrique ont été remplacées par la tomographie électrique pour une résolution optimisée des variations latérales de résistivités qui rende mieux compte des géométries discontinues des aquifères de socle. L’application des tomographies électriques utilise des équipements et des configurations de mesure, des procédés de traitement et d’inversion des données spécifiquement adaptés à ces environnements particuliers.Ces procédures de travail, leurs prérequis, leurs limites et les résultats obtenus sont illustrés par des exemples d’application sur différents sites bien documentés par des données de forage et diagraphie dans différents environnements (granite, cornéennes, méta-sédiment) en France, en Inde, en Guyane, en Uruguay et en Chine.Une fois les données acquises, analysées, qualifiées, traitées et inversées au moyen de méthodes adaptées, les résultats de la tomographie électrique de résistivité sont globalement la définition d’une succession résistant-conducteur-résistant rendant compte du profil d’altération stratiforme et des couches aquifères associés, tels que définies par Wyns et al. (2004), ainsi que l’épaississement localisé, voire l’enracinement de la couche conductrice intercalée, traduisant généralement la présence de discontinuités subverticales (fractures, filons, contacts lithologiques, …). Les performances et limites de la méthode pour distinguer, dans la couche conductrice intercalée, plusieurs niveaux imageant les parties capacitive et transmissive de l’aquifère ou le passage de zone non saturée à zone saturée sont discutées. Sur la base de ces résultats, une procédure générale d’exploration en vue de forages hydrogéologiques se dessine, ciblant d’une part les profils d’altération les plus épais pour une épaisseur maximale de l’aquifère et de la zone fissurée productive à sa base, et d’autre part les discontinuités subverticales pour bénéficier de la productivité des failles, filons et contacts ; ces dernières constituent des cibles de forage de choix, notamment lorsque l’horizon fissuré du profil d’altération stratiforme est réduit. Parallèlement, l'identification des zones les plus conductrices, permet d'éviter leur forage quand elles correspondent à des formations argilisées peu perméables. Wyns R., Baltassat J.M. , Lachassagne P., Legtchenko A., Vairon J. (2004).- Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bull. Soc. Géol. Fr., 175(1), 21-34
    • …
    corecore