469 research outputs found

    Divergent platforms

    Get PDF
    Models of electoral competition between two opportunistic, office-motivated parties typically predict that both parties become indistinguishable in equilibrium. I show that this strong connection between the office motivation of parties and their equilibrium choice of identical platforms depends on two—possibly false—assumptions: (1) Issue spaces are uni-dimensional and (2) Parties are unitary actors whose preferences can be represented by expected utilities. I provide an example of a two-party model in which parties offer substantially different equilibrium platforms even though no exogenous differences between parties are assumed. In this example, some voters’ preferences over the 2-dimensional issue space exhibit non-convexities and parties evaluate their actions with respect to a set of beliefs on the electorate

    The Prometastatic Microenvironment of the Liver

    Get PDF
    The liver is a major metastasis-susceptible site and majority of patients with hepatic metastasis die from the disease in the absence of efficient treatments. The intrahepatic circulation and microvascular arrest of cancer cells trigger a local inflammatory reaction leading to cancer cell apoptosis and cytotoxicity via oxidative stress mediators (mainly nitric oxide and hydrogen peroxide) and hepatic natural killer cells. However, certain cancer cells that resist or even deactivate these anti-tumoral defense mechanisms still can adhere to endothelial cells of the hepatic microvasculature through proinflammatory cytokine-mediated mechanisms. During their temporary residence, some of these cancer cells ignore growth-inhibitory factors while respond to proliferation-stimulating factors released from tumor-activated hepatocytes and sinusoidal cells. This leads to avascular micrometastasis generation in periportal areas of hepatic lobules. Hepatocytes and myofibroblasts derived from portal tracts and activated hepatic stellate cells are next recruited into some of these avascular micrometastases. These create a private microenvironment that supports their development through the specific release of both proangiogenic factors and cancer cell invasion- and proliferation-stimulating factors. Moreover, both soluble factors from tumor-activated hepatocytes and myofibroblasts also contribute to the regulation of metastatic cancer cell genes. Therefore, the liver offers a prometastatic microenvironment to circulating cancer cells that supports metastasis development. The ability to resist anti-tumor hepatic defense and to take advantage of hepatic cell-derived factors are key phenotypic properties of liver-metastasizing cancer cells. Knowledge on hepatic metastasis regulation by microenvironment opens multiple opportunities for metastasis inhibition at both subclinical and advanced stages. In addition, together with metastasis-related gene profiles revealing the existence of liver metastasis potential in primary tumors, new biomarkers on the prometastatic microenvironment of the liver may be helpful for the individual assessment of hepatic metastasis risk in cancer patients

    Genes encoding critical transcriptional activators for murine neural tube development and human spina bifida: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spina bifida is a malformation of the neural tube and is the most common of neural tube defects (NTDs). The etiology of spina bifida is largely unknown, although it is thought to be multi-factorial, involving multiple interacting genes and environmental factors. Mutations in transcriptional co-activator genes-<it>Cited2</it>, <it>p300</it>, <it>Cbp</it>, <it>Tfap2α</it>, <it>Carm1 </it>and <it>Cart1 </it>result in NTDs in murine models, thus prompt us to investigate whether homologues of these genes are associated with NTDs in humans.</p> <p>Methods</p> <p>Data and biological samples from 297 spina bifida cases and 300 controls were derived from a population-based case-control study conducted in California. 37 SNPs within <it>CITED2</it>, <it>EP300</it>, <it>CREBBP</it>, <it>TFAP2A</it>, <it>CARM1 </it>and <it>ALX1 </it>were genotyped using an ABI SNPlex assay. Odds ratios and 95% confidence intervals were calculated for alleles, genotypes and haplotypes to evaluate the risk for spina bifida.</p> <p>Results</p> <p>Several SNPs showed increased or decreased risk, including <it>CITED2 </it>rs1131431 (OR = 5.32, 1.04~27.30), <it>EP300 </it>rs4820428 (OR = 1.30, 1.01~1.67), <it>EP300 </it>rs4820429 (OR = 0.50, 0.26~0.50, in whites, OR = 0.7, 0.49~0.99 in all subjects), <it>EP300 </it>rs17002284 (OR = 0.43, 0.22~0.84), <it>TFAP2A </it>rs3798691 (OR = 1.78, 1.13~2.87 in Hispanics), <it>CREBBP </it>rs129986 (OR = 0.27, 0.11~0.69), <it>CARM1 </it>rs17616105 (OR = 0.41, 0.22~0.72 in whites). In addition, one haplotype block in <it>EP300 </it>and one in <it>TFAP2A </it>appeared to be associated with increased risk.</p> <p>Conclusions</p> <p>Modest associations were observed in <it>CITED2</it>, <it>EP300</it>, <it>CREBBP</it>, <it>TFAP2A </it>and <it>CARM1 </it>but not <it>ALX1</it>. However, these modest associations were not statistically significant after correction for multiple comparisons. Searching for potential functional variants and rare causal mutations is warranted in these genes.</p

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Atomic Resolution Cryo-EM Structure Of A Nativelike CENP-A Nucleosome Aided By An Antibody Fragment

    Get PDF
    Genomic DNA in eukaryotes is organized into chromatin through association with core histones to form nucleosomes, each distinguished by their DNA sequences and histone variants. Here, we used a single-chain antibody fragment (scFv) derived from the anti-nucleosome antibody mAb PL2-6 to stabilize human CENP-A nucleosome containing a native α-satellite DNA and solved its structure by the cryo-electron microscopy (cryo-EM) to 2.6 Å resolution. In comparison, the corresponding cryo-EM structure of the free CENP-A nucleosome could only reach 3.4 Å resolution. We find that scFv binds to a conserved acidic patch on the histone H2A-H2B dimer without perturbing the nucleosome structure. Our results provide an atomic resolution cryo-EM structure of a nucleosome and insight into the structure and function of the CENP-A nucleosome. The scFv approach is applicable to the structural determination of other native-like nucleosomes with distinct DNA sequences

    LEDGF/p75 Proteins with Alternative Chromatin Tethers Are Functional HIV-1 Cofactors

    Get PDF
    LEDGF/p75 can tether over-expressed lentiviral integrase proteins to chromatin but how this underlies its integration cofactor role for these retroviruses is unclear. While a single integrase binding domain (IBD) binds integrase, a complex N-terminal domain ensemble (NDE) interacts with unknown chromatin ligands. Whether integration requires chromatin tethering per se, specific NDE-chromatin ligand interactions or other emergent properties of LEDGF/p75 has been elusive. Here we replaced the NDE with strongly divergent chromatin-binding modules. The chimeras rescued integrase tethering and HIV-1 integration in LEDGF/p75-deficient cells. Furthermore, chromatin ligands could reside inside or outside the nucleosome core, and could be protein or DNA. Remarkably, a short Kaposi's sarcoma virus peptide that binds the histone 2A/B dimer converted GFP-IBD from an integration blocker to an integration cofactor that rescues over two logs of infectivity. NDE mutants were corroborative. Chromatin tethering per se is a basic HIV-1 requirement and this rather than engagement of particular chromatin ligands is important for the LEDGF/p75 cofactor mechanism

    Macrophages promote angiogenesis in human breast tumour spheroids in vivo

    Get PDF
    An in vivo model has been established to study the role of macrophages in the initiation of angiogenesis by human breast tumour spheroids in vivo. The extent of the angiogenic response induced by T47D spheroids implanted into the dorsal skinfold chamber in nude mice was measured in vivo and compared to that induced by spheroids infiltrated with human macrophages prior to implantation. Our results indicate that the presence of macrophages in spheroids resulted in at least a three-fold upregulation in the release of vascular endothelial growth factor (VEGF) in vitro when compared with spheroids composed only of tumour cells. The angiogenic response measured around the spheroids, 3 days after in vivo implantation, was significantly greater in the spheroids infiltrated with macrophages. The number of vessels increased (macrophages vs no macrophages 34±1.9 vs 26±2.5, P<0.01), were shorter in length (macrophages vs no macrophages 116±4.92 vs 136±6.52, P<0.008) with an increased number of junctions (macrophages vs no macrophages 14±0.93 vs 11±1.25, P<0.025) all parameters indicative of new vessel formation. This is the first study to demonstrate a role for macrophages in the initiation of tumour angiogenesis in vivo

    NEDD9 Is a Positive Regulator of Epithelial-Mesenchymal Transition and Promotes Invasion in Aggressive Breast Cancer

    Get PDF
    Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC) subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy
    corecore