18,877 research outputs found

    A Mathematical Model of the Obesity Epidemic

    Get PDF

    Applicant Attraction Strategies: An Organizational Perspective

    Get PDF
    Developing labor shortages are expected to increase the importance of applicant attraction into the next century. Unfonunately, previous research has provided little in the way of unified theory or operational guidelines for organizations confronted with attraction difficulties. In part, this is because much research has been framed from the applicant\u27s, rather than the organization\u27s, perspective. In addition, attraction-related theories and research are scattered across a variety of literatures, and often identified primarily with topics other than attraction per se (e.g., wage, motivation, or discrimination theories). The present paper draws on multiple literatures to develop a model of applicant attraction from the organization\u27s perspective. In it, we (1) outline three general strategies for enhancing applicant attraction, (2) propose broad categories of contingency factors expected to affect the choice (and potential effectiveness) of alternative strategies, (3) suggest probable interrelationships among the strategies, (4) link applicant attraction strategies to other human resource practices, (5) outline various dimensions of attraction outcomes (e.g. qualitative and quantitative, attitudinal and behavioral, temporal), and (6) discuss implications for future attraction research

    U.S. CHAIN RESTAURANT EFFICIENCY

    Get PDF
    The growth of corporate food service firms and the resulting competition places increasing pressures on available resources and their efficient usage. This analysis measures efficiencies for U. S. chain restaurants and determines associations between managerial and operational characteristics. Using a ray-homothetic production function, frontiers were estimated for large and small restaurant chains. Technical and scale efficiencies were then derived for the firms. Finally, a Tobit analysis measured associations between technical efficiencies and firm characteristics. Results showed differences based on firm size, but factors such as experience, service format, unit size, and menu were strongly associated with efficiency, perhaps offsetting some firm size effects.Agribusiness,

    Phosphorylation of the Arp2 subunit relieves auto-inhibitory interactions for Arp2/3 complex activation.

    Get PDF
    Actin filament assembly by the actin-related protein (Arp) 2/3 complex is necessary to build many cellular structures, including lamellipodia at the leading edge of motile cells and phagocytic cups, and to move endosomes and intracellular pathogens. The crucial role of the Arp2/3 complex in cellular processes requires precise spatiotemporal regulation of its activity. While binding of nucleation-promoting factors (NPFs) has long been considered essential to Arp2/3 complex activity, we recently showed that phosphorylation of the Arp2 subunit is also necessary for Arp2/3 complex activation. Using molecular dynamics simulations and biochemical assays with recombinant Arp2/3 complex, we now show how phosphorylation of Arp2 induces conformational changes permitting activation. The simulations suggest that phosphorylation causes reorientation of Arp2 relative to Arp3 by destabilizing a network of salt-bridge interactions at the interface of the Arp2, Arp3, and ARPC4 subunits. Simulations also suggest a gain-of-function ARPC4 mutant that we show experimentally to have substantial activity in the absence of NPFs. We propose a model in which a network of auto-inhibitory salt-bridge interactions holds the Arp2 subunit in an inactive orientation. These auto-inhibitory interactions are destabilized upon phosphorylation of Arp2, allowing Arp2 to reorient to an activation-competent state

    Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths

    Get PDF
    A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria

    Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks

    Full text link
    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method -- a single clock laser combined with a DC magnetic field-- relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10^-17 for the metrologically preferred even isotopes

    Type I interferons in tuberculosis: Foe and occasionally friend

    Get PDF
    Tuberculosis remains one of the leading causes of mortality worldwide, and, despite its clinical significance, there are still significant gaps in our understanding of pathogenic and protective mechanisms triggered by Mycobacterium tuberculosis infection. Type I interferons (IFN) regulate a broad family of genes that either stimulate or inhibit immune function, having both host-protective and detrimental effects, and exhibit well-characterized antiviral activity. Transcriptional studies have uncovered a potential deleterious role for type I IFN in active tuberculosis. Since then, additional studies in human tuberculosis and experimental mouse models of M. tuberculosis infection support the concept that type I IFN promotes both bacterial expansion and disease pathogenesis. More recently, studies in a different setting have suggested a putative protective role for type I IFN. In this study, we discuss the mechanistic and contextual factors that determine the detrimental versus beneficial outcomes of type I IFN induction during M. tuberculosis infection, from human disease to experimental mouse models of tuberculosis

    Contractile stresses in cohesive cell layers on finite-thickness substrates

    Full text link
    Using a minimal model of cells or cohesive cell layers as continuum active elastic media, we examine the effect of substrate thickness and stiffness on traction forces exerted by strongly adhering cells. We obtain a simple expression for the length scale controlling the spatial variation of stresses in terms of cell and substrate parameters that describes the crossover between the thin and thick substrate limits. Our model is an important step towards a unified theoretical description of the dependence of traction forces on cell or colony size, acto-myosin contractility, substrate depth and stiffness, and strength of focal adhesions, and makes experimentally testable predictions.Comment: 5 pages, 3 figure

    Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    Get PDF
    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application
    • …
    corecore